一、必备的知识点
在参加大模型相关的校招面试时,以下是一些必备的知识点,这些知识点可以帮助应聘者更好地准备面试,并在面试中展示自己的专业能力:
1. 基础概念理解
- 了解什么是大模型,以及它们在自然语言处理、计算机视觉等领域的应用。
- 熟悉深度学习的基本原理,包括神经网络、激活函数、反向传播等。
2. 模型架构
- 掌握Transformer、卷积神经网络(CNN)、循环神经网络(RNN)等常见网络架构。
- 了解生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion Models)等生成模型。
3. 注意力机制
- 理解自注意力(Self-Attention)和交叉注意力(Cross-Attention)的原理和区别。
- 掌握注意力机制在不同模型中的应用,如Transformer中的多头注意力。
4. Diffusion Models
- 了解扩散模型的基本原理,包括噪声添加、去噪过程等。
- 熟悉Stable Diffusion模型的网络结构和训练方法。
- 了解不同扩散模型(如DDPM, DDIM)之间的区别和联系。
5. 训练技巧和微调方法
- 理解如何进行模型微调,包括Dreambooth、Lora等微调技术。
- 了解条件化训练(Conditioning Training)的具体做法。
6. 损失函数和优化器
- 熟悉不同的损失函数,如交叉熵、均方误差等。
- 了解常见的优化器,如Adam、SGD,以及它们的参数和调优策略。
7. 评估指标
- 掌握图像生成、文本生成等任务的评估指标,如Inception Score、FID等。
8. 数据处理和增强
- 了解数据预处理、数据增强的方法和技巧。
9. 实际应用案例
- 熟悉大模型在现实世界中的应用案例,如GPT-3、DALL-E、CLIP等。
10. 最新研究趋势
- 关注最新的研究论文和趋势,了解大模型领域的最新进展。
11. 编程和实践能力
- 具备一定的编程能力,能够使用TensorFlow、PyTorch等框架进行模型搭建和训练。
12. 面试技巧
- 准备好解释自己的项目经验和研究成果。
- 练习清晰地表达复杂的技术概念。
掌握以上知识点可以帮助应聘者在面试中更好地展示自己的专业知识和技能,提高通过大模型相关岗位校招面试的概率。
二、常问面试题
- 你了解哪些 Diffusion 模型
- Stable Diffusion 的网络结构
- 谈谈Stable Diffusion中的交叉注意力机制
- 介绍一下self attention 和 cross attention的区别。
- SD和原始Diffusion模型的区别
- SD为什么文字生成效果不好以及如何解决
- SDXL和SD的区别
- SDXL 中的条件化训练具体怎么做
- SD 有哪些微调方法
- 训练Stable Diffusion时为什么使用offset Noise?
- Dreambooth 和 Lora 微调的区别
- 扩散模型有哪些常见的采样方式?
- 介绍一下SD, Dall-E两者的异同
- GAN 和 Diffusion 模型的区别
- Dalle-2 的网络结构
- 扩散模型中添加的是高斯噪声,能否使用其他噪声的加噪方式?
- 介绍一下你了解的Diffusion加速方法?
- 为什么DDPM加噪声的程度是一致的?
- DDDM 和 DDIM 的关系?
- 实现 DDPM 是否需要什么条件?
- 推演 DDPM 公式。
- 介绍CLIP的模型架构、训练方法与损失函数。
- 谈谈AE, VAE和VQ-VAE的区别。
- 介绍一下classifier-free guidance和classifier guidance的区别?
- 图像生成的评估指标有哪些?
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
⑤AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。
⑥AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~