微软开源MarkitDown,RAG文档解析就这么解决了~

RAG有这么一个说法:“垃圾进,垃圾出”,文档解析与处理以获取高质量数据至关重要。近期,微软开源了MarkItDown,一款将各种文件转换为 Markdown 的实用程序(用于索引、文本分析等)。

https://x.com/shao__meng/status/1867348058662744236

MarkItDown支持

  • PDF

  • PPT

  • Word

  • Excel

  • 图像(EXIF 元数据和 OCR)

  • 音频(EXIF 元数据和语音转录)

  • HTML

  • 基于文本的格式(CSV、JSON、XML)

  • ZIP 文件

MarkItDown使用

使用 pip: pip install markitdown。或者,从源代码安装它:pip install -e .

Python中的基本用法:

from markitdown import MarkItDown` `md = MarkItDown() result = md.convert("test.xlsx")` `print(result.text_content)

要使用大型语言模型进行图像描述,请提供llm_client和llm_model:

from markitdown import MarkItDown` `from openai import OpenAI client = OpenAI()` `md = MarkItDown(llm_client=client, llm_model="gpt-4o")` `result = md.convert("example.jpg") print(result.text_content)

MarkItDown试用

https://www.html.zone/markitdown/

https://github.com/microsoft/markitdown

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

### 使用RAG和VLM进行复杂文档解析 #### 方法概述 为了实现复杂的文档解析,可以采用基于检索增强生成(Retrieval-Augmented Generation, RAG)技术和视觉语言模型(Vision-Language Model, VLM)。这类方法能够有效处理多模态数据并提供更精准的回答。 对于文本部分,GraphRAG框架被证明能显著提升问答系统的性能[^1]。该框架不仅依赖于传统的向量相似度匹配来查找相关信息片段,还引入了由大型语言模型构建的知识图谱,从而更好地理解上下文关系及其语义含义。 当涉及到图像内容时,则需利用预训练阶段获得的能力——通过对大量带描述性的图片-文字对的学习,使得模型具备识别图像基本特征并与之关联适当解释说明的功能[^3]。 #### 实现流程 具体到操作层面: - **准备材料**:收集待解析文件,包括但不限于PDF、Word等形式的文字资料;同时准备好可能涉及的相关领域高质量图文素材库。 - **提取信息**:运用OCR技术将非结构化电子档转换成可编辑纯文本格式,并从中抽取关键句作为后续查询依据;针对插图或图表等内容则借助已有的VLM来进行初步解读。 - **建立索引**:根据上述所得创建倒排表或其他形式高效的数据存储机制以便快速定位目标位置。 - **执行搜索**:启动GraphRAG引擎,在已有知识网络基础上实施广度优先遍历算法寻找最贴近问题核心的答案节点群集。 - **整合输出**:最后一步就是把来自不同渠道获取的信息按照一定逻辑顺序组合起来形成最终回复。 以下是Python代码示例用于展示如何集成这些组件完成一次完整的任务流: ```python from transformers import pipeline import pytesseract from PIL import Image def ocr_image(image_path): """使用Tesseract OCR读取图片中的文本""" img = Image.open(image_path) text = pytesseract.image_to_string(img) return text def rag_query(query_text, context_db): """模拟发起基于GraphRAG架构的查询请求""" nlp_pipeline = pipeline('question-generation') generated_questions = nlp_pipeline(context=context_db) # 这里简化表示为直接返回第一个问题的结果 best_match = next((q for q in generated_questions if query_text.lower() in q['question'].lower()), None)['answer'] return best_match document_content = "这里放置实际文档内容" image_caption = ocr_image('./example.png') context_database = document_content + "\n" + image_caption query_result = rag_query("关于这个主题的关键点是什么?", context_database) print(f"查询结果如下:\n{query_result}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值