AI 智能体、智能化 AI、智能化架构、智能化工作流。智能体(Agents)无处不在。但它们到底是什么?它们真的能做些什么吗?
新技术往往伴随着混乱的术语、夸张的期望,以及大量自封的网络专家。在本文中,我们将剥去围绕 AI 智能体的噪音与炒作,深入解析智能化 AI 的一个核心原则:智能化工作流(Agentic Workflows)。
单独来看,智能体的能力十分有限。它们需要被赋予角色、目标和结构,才能有效地实现目标。这正是工作流的作用所在。
理解智能化工作流,可以帮助你理解 AI 智能体的运行方式及其背后的逻辑。为此,我们将探讨 AI 智能体的核心组成部分,为你提供智能化工作流的清晰定义,解释什么使得工作流具备智能性,深入剖析智能化工作流的关键模式,并通过实际案例和应用场景展示其优势和挑战。
1. 什么是 AI 智能体?
AI 智能体(AI Agents) 是结合了大语言模型(LLM)进行推理与决策,并配备工具以实现现实世界交互的系统,使其能够在有限的人类干预下完成复杂任务。智能体通常被赋予特定的角色,并根据需求被设定不同程度的自主性,以实现最终目标。此外,它们还具备记忆能力,能够从过去的经验中学习,并随着时间推移不断提升自身性能。
如果你想深入了解 AI 智能体的历史及其构建工具,可以查看我们的博客文章:《简化智能体:AI 语境中的智能体究竟是什么?》[1]。
为了更好地理解 AI 智能体在智能化工作流中的角色,我们接下来将探讨 AI 智能体的核心组成部分。
1.1 AI 智能体的组成部分
尽管 AI 智能体被设计为半自主决策系统,但它们依赖于一个更大的组件框架来正常运行。这个框架包括:大语言模型(LLM),使智能体能够进行有效的推理;工具(Tools),帮助智能体完成任务;以及记忆(Memory),使智能体能够从过去的经验中学习,并随着时间的推移优化响应。
AI 智能体的组成部分
推理(Reasoning)
AI 智能体的高效性部分源于其迭代推理(iterative reasoning) 能力,使其能够在整个问题解决过程中持续“思考”。智能体的推理能力主要依赖于底层 LLM,并执行两项核心功能:规划(planning)和反思(reflecting)。
在规划阶段,智能体进行任务分解(task decomposition),即将复杂问题拆解为更小、更易执行的步骤。这种方法不仅使智能体能够系统地执行任务,还允许它为不同的任务使用不同的工具。此外,智能体还可以进行查询分解(query decomposition),即将复杂查询拆解为更简单的查询,以提高 LLM 生成响应的准确性和可靠性。
智能体还通过反思(reflecting) 自身行为的结果进行推理。这使其能够评估任务执行情况,并根据外部数据源的信息,动态调整下一步的行动计划。
工具(Tools)
LLMs 的知识是静态的,仅限于训练过程中编码的信息。为了扩展能力,使其超越原始数据集,智能体可以利用外部工具(如网络搜索引擎、API、数据库和计算框架)。这意味着智能体可以访问实时的外部数据,指导决策并完成需要与其他应用交互的任务。
工具通常伴随权限管理,如查询 API、发送消息、访问特定文档或数据库结构等。下表列出了一些常见的 AI 智能体工具及其执行的任务:
工具 | 任务 |
---|---|
网络搜索(Internet search) | 检索和总结实时信息。 |
向量搜索(Vector search) | 检索和总结外部数据。 |
代码解释器(Code interpreter) | 迭代执行智能体生成的代码。 |
API | 获取实时信息,并与外部服务和应用交互。 |
当 LLM 选择某个工具来帮助完成任务时,它会执行一种称为**函数调用(function calling)**的行为。这种方式使 LLM 能够超越单纯的文本生成,真正实现与现实世界的交互。
工具的选择可以由终端用户预先定义,也可以由智能体动态决定。让智能体自主选择工具有助于解决更复杂的任务,但对于较简单的工作流而言,预定义工具通常更加高效,可避免不必要的复杂性。
记忆(Memory)
学习过去的经验并记住上下文,是智能化工作流区别于纯 LLM 驱动工作流的重要特性。记忆是 AI 智能体的关键组件,支持智能体在多个用户交互和会话之间存储和调用上下文与反馈信息。智能体的记忆主要包括短期记忆和长期记忆两种类型:
- 短期记忆(Short-term memory) 存储最近的会话信息,如对话历史,使智能体能够确定下一步行动,以完成当前目标。
- 长期记忆(Long-term memory) 存储随时间积累的信息和知识,涵盖多个会话。这使智能体能够进行个性化调整,并随着使用时间的增长不断优化自身性能。
2. 什么是智能化工作流?
一般而言,工作流(workflow) 是一系列相互关联的步骤,旨在完成特定任务或目标。最简单的工作流是确定性的(deterministic),即遵循预定义的固定步骤,无法适应新信息或变化的环境。例如,一个自动化的报销审批工作流可能是:“如果报销项目被标记为‘餐饮’,且金额小于 $30,则自动审批。”
然而,一些工作流会结合**大语言模型(LLM)*或其他机器学习技术。这类工作流通常被称为*AI 工作流,它们可以是智能化的(agentic),也可以是非智能化的(non-agentic)。在非智能化的 AI 工作流中,LLM 仅根据输入指令生成输出。例如,一个文本摘要工作流可能是:输入一段长文本,LLM 生成摘要并返回结果。但仅仅使用 LLM 并不意味着工作流是智能化的。
2.1 智能化工作流(Agentic Workflow)
智能化工作流是由智能体(Agent)或多个智能体动态执行的一系列任务步骤,以完成特定目标。在智能化工作流中,智能体被赋予权限,允许它们在一定程度上自主收集数据、执行任务,并做出可在现实世界中执行的决策。
智能化工作流依赖 AI 智能体的核心组件,包括:
- 推理能力(Reasoning):智能体能够拆解任务、制定计划,并根据情况调整执行策略。
- 工具使用能力(Tool Usage):智能体能够调用外部工具(如 API、数据库、网络搜索)来执行任务。
- 记忆(Memory):智能体可以存储和利用上下文信息,使工作流更加响应式(responsive)、自适应(adaptive),并能随着时间推移不断优化。
工作流类型
2.2 什么让工作流具备智能性?
当一个或多个智能体参与引导和塑造任务流程时,AI 工作流便变得智能化。将智能体添加到现有的非智能化工作流,可以形成一种混合方法,结合结构化工作流的可靠性与 LLM 的智能性和适应性。
智能化工作流的核心特点:
- 制定计划(Make a plan):
- 通过任务分解(task decomposition),LLM 将复杂任务拆解为多个小任务,并确定最佳执行路径。
- 使用工具执行任务(Execute actions with tools):
- 智能化工作流使用一组预定义的工具,并搭配权限管理来执行任务,实现计划。
- 反思与迭代(Reflect and iterate):
- 智能体能够评估每个步骤的执行结果,并在必要时调整计划,直到获得令人满意的结果。
从这个角度来看,我们可以区分三种不同的工作流:
类型 | 特点 |
---|---|
传统工作流(Non-AI Workflow) | 仅依赖预定义的规则,不使用 AI。 |
非智能化 AI 工作流(Non-Agentic AI Workflow) | 依赖 LLM 生成结果,但不具备推理、记忆和自适应能力。 |
智能化工作流(Agentic Workflow) | 由智能体动态执行,具备推理、工具调用、记忆与迭代能力。 |
相比之下,智能化工作流比非智能化工作流更加动态和自适应,能更好地应对变化的环境和任务需求。
2.3 智能化架构 vs. 智能化工作流
每当新技术出现时,都会带来大量新的术语。虽然“智能化架构(Agentic Architectures)”和“智能化工作流(Agentic Workflows)”这两个术语常被混用,但它们实际上有重要的区别。
智能化工作流(Agentic Workflow) | 智能化架构(Agentic Architecture) |
---|---|
定义:指智能体执行任务所采取的步骤 | 定义:指支持智能体运行的技术框架和系统设计 |
核心关注点:任务的执行过程,如使用 LLM 进行规划、拆解任务、调用工具、反思结果等 | 核心关注点:系统的整体架构,包括智能体的决策逻辑、工具集成、存储机制等 |
示例:智能体使用 LLM 规划任务、调用 API 处理数据,并根据反馈调整决策 | 示例:包含智能体、大语言模型、外部工具(API/数据库)和记忆系统的完整 AI 系统 |
简单来说,智能化架构是支撑智能化工作流的底层系统设计。每个智能化架构都包含至少一个具备决策和推理能力的智能体,配备工具来执行任务,并包含短期和长期记忆模块。
如果你想进一步了解最强大的智能化架构,可以查看这本免费电子书[2],其中包含直观的示例和图解。
3. *智能化工作流中的模式*
回顾一下,智能化工作流(Agentic Workflow) 是智能体为完成特定任务(即最终目标)而执行的一系列结构化步骤。因此,当我们讨论智能化工作流时,我们实际上是在讨论智能体实现最终目标的特定行为模式。
正如前面提到的,智能体的核心能力在智能化工作流模式中起着关键作用。例如,智能体的推理能力(Reasoning) 使其能够进行规划(Planning) 和 反思(Reflection),而其工具使用能力(Tool Use) 使其能够与外部环境交互,从而提升任务执行能力。
3.1. 规划模式(Planning Pattern)
规划模式 使智能体能够自主地将复杂任务拆解为一系列更小、更简单的子任务,这一过程被称为 任务分解(Task Decomposition)。
任务分解可以带来更好的结果,因为它:
- 降低 LLM 的认知负荷,减少需要一次性处理的信息量。
- 增强推理能力,使智能体能够更系统地分析问题。
- 减少幻觉(hallucinations) 和其他可能的错误,提高准确性。
适用场景
规划模式在目标实现方式不明确、问题解决需要高度适应性时特别有效。例如,如果让 AI 智能体修复软件 Bug,它可能会这样拆解任务:
- 阅读 Bug 报告。
- 确定相关代码段。
- 生成潜在问题的列表。
- 选择合适的调试策略并执行修复。
如果修复失败,智能体可以读取错误信息,调整策略 并再次尝试。
优缺点
- 优点:适用于复杂任务,能够动态调整策略,提高问题解决能力。
- 缺点:结果可能不如确定性(deterministic)工作流那样可预测,因此不适用于需要严格控制的任务。
规划模式
3. 2. 工具使用模式(Tool Use Pattern)
生成式 LLM 的一个主要局限性 是它们依赖于已有的训练数据,因此:
- 无法获取实时信息(如最新新闻、股票数据等)。
- 无法验证事实的准确性,可能会“猜测”答案,导致错误信息。
为了克服这些局限性,我们可以使用 检索增强生成(RAG,Retrieval Augmented Generation),让 LLM 访问外部数据,从而提供更准确和有上下文依据的回答。
工具使用模式 vs. 传统 RAG
工具使用模式不仅仅是简单的 RAG,而是允许 LLM 动态地与真实世界交互,而不仅仅是从中检索数据。在智能化工作流中,工具使用模式 扩展了智能体的能力,使其能够:
- 与外部资源 和 应用程序 交互。
- 获取实时数据 并进行处理。
- 访问计算资源 以执行复杂计算。
常见工具
智能体可以调用的工具包括:
- API(如天气查询、地图导航、财务分析等)。
- 信息检索(如向量搜索数据库)。
- 网页浏览器(用于网络爬取、查找最新信息)。
- 机器学习模型(用于预测、分类等任务)。
- 代码解释器(用于运行 Python 代码等计算任务)。
这些工具可以帮助智能体完成各种任务,例如:
- 查询网络数据(如新闻、科研论文、实时天气)。
- 从数据库检索信息(如客户记录、库存数据)。
- 读取或发送电子邮件(如自动回复客户邮件)。
工具使用模式
3.3. 反思模式(Reflection Pattern)
反思模式 是一种强大的智能化设计模式,尽管实现起来相对简单,却能显著提高智能化工作流的表现。
在 反思模式 中,智能体会对自身的输出或决策进行迭代评估,在最终响应或执行下一步操作之前,先对结果进行自我反馈。这些反馈会用于:
- 优化执行策略,提升准确性。
- 修正错误,减少失误。
- 改进未来任务执行,使智能体不断进化。
适用场景
反思模式在智能体首次尝试可能不会成功的情况下尤为重要。例如:
- 代码生成:智能体可以先生成代码,在沙盒环境中运行,并根据错误信息调整代码,直到正确执行。
- 复杂问题求解:智能体在推理过程中,可以多次调整逻辑,以找到最优解。
核心优势
- 持续优化:智能体能够动态集成自我反思,提高任务执行质量。
- 无需人工监督:可以在没有人类干预的情况下 不断调整策略,提高自主学习能力。
- 个性化学习:智能体可以将反思结果存入记忆,适应用户偏好,优化未来交互。
反思模式
4. *智能化工作流的应用场景*
原子设计模式(如规划和工具使用)可以通过不同的组合方式,充分利用智能 AI 处理各种任务。在此基础上,智能体不仅可以使用不同的工具,还能动态选择工具 来满足任务需求。此外,智能体还可以集成人类反馈机制,并被赋予不同程度的自主性和决策权。
这种灵活的配置方式使得智能化工作流可以适用于多个行业的广泛任务。本文将重点介绍两个强大且常见的应用场景:智能 RAG(Agentic RAG) 和 智能研究助理(Agentic Research Assistants)。
4.1. 智能 RAG(Agentic RAG)
*检索增强生成(RAG, Retrieval-Augmented Generation)*[3] 通过从外部数据源检索相关数据 来增强 LLM 的知识。而 智能 RAG 则在 RAG 流水线中引入一个或多个智能体,增强其智能化程度。
智能 RAG 如何优化检索?
- 规划阶段:智能体可以将复杂查询拆解成多个子查询(查询分解),或者判断是否需要向用户请求额外信息,以便更准确地完成查询。
- 检索评估:智能体可以评估检索到的数据的相关性和准确性,确保其质量。
- 动态调整查询:
- 如果检索结果不满意,智能体可以重新生成查询或调整查询拆解方案,甚至创建新的搜索计划。
智能 RAG 工作流
智能 RAG vs. 传统 RAG
- 传统 RAG:仅执行一次性检索,不具备自主优化能力。
- 智能 RAG:可以自适应调整查询方式,多次迭代优化检索结果,提高检索的准确性和上下文相关性。
更多架构细节:如果你对智能 RAG 的架构感兴趣,可以下载 免费电子书[4] 了解更多内容。
4.2. 智能研究助理(Agentic Research Assistants)
智能研究助理(又称“深度研究”)可用于生成深入报告和详细见解,它们不仅检索外部信息,还能综合分析信息,而不仅仅是简单地返回相关数据。
智能研究助理如何提升研究能力?
- 专门训练:智能体使用针对网页浏览、任务拆解和动态规划进行微调的 LLM。
- 主动交互:智能体会与用户主动交流,请求额外信息或澄清需求,以便更精准地完成任务。
- 动态调整策略:
- 智能体可以根据检索到的新信息 重新规划查询,探索新的研究角度。
- 它们可以连续查询多个数据源,直到找到必要的数据。
智能研究助理的优势
- 深度分析:不仅检索数据,还能识别趋势、总结见解,甚至编写完整的研究报告。
- 超越传统 RAG:比普通 RAG 更强大,因为它具备数据综合能力,而不仅仅是数据检索。
- 可持续优化:可以通过反思(Reflection Pattern)不断提高研究质量。
现有智能研究助理
目前,多个 AI 公司已经发布了自己的智能研究助理:
- OpenAI Deep Research[5]
- Perplexity Deep Research[6]
- Google Gemini Deep Research[7]
4.3. 智能编程助理(Agentic Coding Assistants)**
智能编程助理 可以自动生成、重构、优化和调试代码,大幅减少人工干预,提高开发效率。
智能编程助理 vs. 传统 AI 编程助手
- 传统编程助手(如 GitHub Copilot 早期版本):
- 仅基于 LLM 生成代码,不具备执行和优化能力。
- 智能编程助理:
- 执行代码:能够运行生成的代码,并根据执行结果进行调整。
- 自主优化:能够基于错误信息 迭代优化代码,直到正确执行。
- 代码管理:可以创建 Git 提交(commits)和 PR(pull requests),参与代码版本管理。
- 人机协作:可以建议终端命令或代码修改,并等待人工批准后执行。
现有智能编程助理
- Anthropic Claude Code[8]:具备 PR 提交功能,可直接修改代码库。
- Cursor Agent[9]:提供终端命令建议,并等待用户确认执行。
智能编程助理的核心能力
- 自主调试:能够分析运行结果并修复错误。
- 长记忆学习:可以记录错误模式,减少未来重复犯错的概率。
- 高效协作:支持人机协作,确保代码修改符合开发规范。
5. 智能化工作流示例
在介绍了智能化工作流的应用场景之后,我们将更详细地探讨两个实际智能体的工作流程:Claygent[10] 和 ServiceNow AI Agents[11]。每个工作流使用其独特的设计模式和工具,赋予智能体不同的自主性和决策能力,并依赖不同程度的人类反馈和参与。
5.1 Claygent(Clay)
对于成长和销售团队来说,线索研究和数据丰富可能是一项繁琐的任务。Clay[12] 是一家数据丰富和外展自动化公司,通过其 Claygent AI 助手简化了这一过程,该助手持续扫描网络和内部数据库,以提供实时、可操作的见解。
假设你想使用 Claygent 来丰富 LinkedIn 个人资料,基于一组姓名和电子邮件地址,然后发送个性化的介绍信息。首先,你指定所需的数据字段(例如:工作经验、教育背景、技能),这些字段将被注入到一个预配置的提示模板中。智能体的 LLM(大语言模型)处理查询,使用网页抓取工具在网络上查找 LinkedIn 网址,并提取所需的个人资料数据。然后,这些数据可以传递给另一个 LLM,你可以指示它以任何你希望的方式总结或分析这些丰富的数据。之后,同样的 LLM(或另一个)可以用来为每个个人资料创建个性化的外展消息。
Claygent 是一个相对灵活的智能化工作流示例,可以根据需要以创造性的方式进行定制,同时通过预配置的提示模板为特定任务提供指导。
5.2 ServiceNow AI Agents
ServiceNow[13] 是一个基于云的平台,用于简化和自动化 IT、运营、HR 和客户服务领域的工作流。它们的 ServiceNow 平台现在包括访问 AI 智能体的功能,旨在自动化重复性任务和现有工作流,同时让人类在决策过程中保持完全控制。
以下是一个智能化工作流如何帮助解决技术支持案例的示例。该工作流在客户提交技术支持工单时被触发。工单中的信息随后传递给一个或多个智能体,这些智能体在内部 IT 支持知识库中执行 RAG(检索增强生成)。智能体总结发现的内容,分析类似的案例,并生成一份总结报告给 IT 支持专家。最后,它会生成一个推荐方案,供专家批准或拒绝。
ServiceNow AI Agents 代表了一种创新但更加谨慎的方式,在生产环境中部署智能体,给它们分配严格的角色和任务,并限制(如果有的话)它们对最终用户或客户的决策自主权。
构建你自己的智能化工作流:如果你想创建自己的智能化工作流,查看 使用 Inngest 构建智能化工作流[14],我们将在其中展示如何创建一个智能化的晚餐计划器。
6. 智能化工作流的优点与局限
AI 智能体迅速从机器学习社区走向主流。鉴于围绕智能化 AI 的激动人心、期望和前景,可能很难从炒作中分辨出其真实能力和局限。在这一部分,我们将为你提供一个关于智能化工作流的优缺点、挑战和局限的平衡视角。
6.1 智能化工作流的优点
智能化工作流超越了传统自动化,赋予 AI 智能体规划、适应和不断改进的能力。与遵循固定规则的确定性工作流不同,智能化工作流可以动态响应复杂性、通过反馈优化其方法,并能够扩展以处理更复杂的任务。这种适应性使其在灵活性、学习和决策至关重要的场景中尤其有价值。
以下是智能化工作流的一些优点:
- 灵活性、适应性和可定制性:静态的确定性工作流在应对变化的情况和突发困难时往往难以适应,而智能化工作流则提供了根据任务的难度进行调整和演变的灵活性,确保始终保持相关性并提供最佳解决方案。它们还可以通过组合不同的模式进行定制,实现模块化设计,以便在需求和复杂性增长时进行迭代升级。
- 在复杂任务中的表现提升:通过将复杂任务分解为更小的可管理步骤(通过任务分解和规划),智能化工作流在执行复杂任务时,显著优于确定性、零样本方法。
- 自我修正和持续学习:反思模式使得智能化工作流能够评估自己的行动、优化策略,并随着时间的推移不断改进结果。通过使用短期和长期记忆,它们能够从过去的经验中学习,在每次迭代中变得更加高效和个性化。
- 操作效率和可扩展性:智能化工作流能够高效地自动化重复性任务(如果设计得当),减少手动工作量和运营成本,并且能够轻松扩展,适用于更大规模的工作负载或复杂系统。
需要注意的是,AI 智能体仍然是一项新兴技术,随着研究人员和用户发现新的方法来将智能体融入工作流,这些优点列表可能会不断扩展。
6.2 智能化工作流的挑战与局限
尽管 AI 智能体具有众多优点和创新功能,但它们也存在一定的挑战和局限性。由于其概率性特征,AI 智能体本身就增加了工作流的复杂性。并且,虽然智能体可以用于自动化流程,但并不意味着它们应该被用在所有流程中。以下是智能化工作流的一些显著挑战和局限性:
- 简单任务的复杂性过高:对于像表单填写或基本数据提取这样的简单工作流,使用 AI 智能体可能会增加额外的开销。如果确定性、基于规则的自动化已足够解决任务,引入智能体可能会导致效率降低、成本增加,甚至可能降低性能。
- 因自主性增加而导致的可靠性降低:随着智能体在工作流中获得更多决策权,它们的概率性特征可能会带来不可预测性,使输出结果的可靠性降低,且更难控制。因此,在实施智能体时,必须建立和维护严格的保护机制,并持续审查它们的权限。
- 伦理和实践方面的考虑:并非所有的决策都应该委托给 AI 系统。在高风险或敏感领域使用智能体时,需要谨慎监督,确保负责任的部署,避免产生不良后果。
鉴于这些局限性,我们建议在特定工作流中使用智能体时,仔细考虑是否真的需要使用智能体。以下是一些可以帮助你判断的关键问题:
- 任务是否足够复杂,需要自适应的决策?还是确定性方法足够解决?
- 是否可以通过更简单的 AI 辅助工具(例如仅使用 RAG,而不使用智能体)达到相同的效果?
- 工作流是否涉及不确定性、变化的条件或多步骤推理,智能体是否能更有效地处理?
- 给智能体授权的风险是什么?这些风险能否得到有效的缓解?
7. 总结
智能化工作流是强大的工具,帮助自动化完成需要决策和推理的复杂任务。在本文中,我们回顾了 AI 智能体的核心组件,包括记忆、工具和推理能力,并讨论了它们如何促进智能化工作流的实现。我们还介绍了常见的工作流模式,如规划、工具使用和反思,这些可以单独或组合使用,创建动态工作流。此外,我们还概述了两个特别有效的应用场景:智能 RAG[15] 和智能研究助理,并描述了市场上已有的两个智能体的工作流——Claygent 和 ServiceNow AI Agents。最后,我们探讨了智能化工作流的优点以及它们的局限性和挑战。
AI 智能体背后的技术在不断发展,我们对它们的理解也在不断深化。本文旨在帮助你基本理解 AI 智能体如何在工作流中运作,但并非对该主题的详尽探索。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~