-
协调者/分发模式 (Coordinator/Dispatcher Pattern)
- 例子: 智能客服中心。当用户提出一个复杂问题时,“协调者”智能体首先理解问题的类型(例如,账单问题、技术故障、产品咨询)。然后,它将该问题“分发”给专门处理该领域的“专家”智能体(如账单专家、技术支持专家、产品知识专家)。协调者不直接解决问题,而是确保问题被路由到最合适的处理者那里,并可能跟踪问题的解决状态。
-
顺序管道模式 (Sequential Pipeline Pattern)
- 步骤1 (输入验证): 第一个智能体接收原始数据(如销售记录),并验证其格式是否正确、数据是否完整。
- 步骤2 (数据处理与分析): 第二个智能体接收验证后的数据,进行统计分析、计算关键指标(如月度增长率、销售额)。
- 步骤3 (结果报告): 第三个智能体接收分析结果,将其格式化为人类可读的报告(如图表、摘要),并可能将其发送给相关人员。每一步的输出是下一步的输入,按顺序执行。
例子: 自动化报告生成系统。
-
并行扇出/聚合模式 (Parallel Fan-Out/Gather Pattern)
- 例子: 旅游行程规划。用户输入目的地和日期,“扇出”阶段启动多个并行运行的智能体:一个搜索机票,一个搜索酒店,一个搜索当地活动和景点。这些智能体同时独立工作以提高效率。当所有智能体完成搜索后,进入“聚合”阶段,另一个智能体将收集到的机票、酒店和活动信息整合成一个完整的行程计划推荐给用户。
-
层级任务分解模式 (Hierarchical Task Decomposition)
- 顶层 (报告撰写者): 负责最终论文的整体结构和风格。
- 中层 (研究助手): 接受顶层指令,将任务分解为更小的部分,例如“文献综述”、“数据分析”、“方法论描述”。它委派这些子任务给底层专家。
- 底层 (专家): 多个智能体分别执行具体任务,如“网络搜索”智能体负责查找相关文献,“数据分析”智能体处理实验数据,“文本摘要”智能体总结文献要点。底层完成后将结果汇报给中层,中层整合后再提交给顶层完成最终论文。
例子: 撰写一篇研究论文。
-
审查/批评模式 (Review/Critique Pattern)
- 例子: AI辅助内容创作。一个“创意写作”智能体负责生成文章初稿。稿件完成后,交给一个“事实核查与风格审查”智能体。该审查智能体检查文章中的事实准确性、语法错误、逻辑连贯性以及是否符合预设的风格要求(如正式、幽默)。审查结果(可能包含修改建议或错误标记)反馈给写作智能体或直接呈现给用户。
-
迭代优化模式 (Iterative Refinement Pattern)
- 例子: 软件代码优化。一个“代码生成”智能体根据需求初步生成一段代码。然后,一个“性能测试与静态分析”智能体运行测试用例,检查代码的性能瓶颈、潜在bug和代码规范符合度。测试结果反馈给“代码优化”智能体,该智能体根据反馈修改代码。这个“生成-检查-优化”的循环不断进行,直到代码达到预定的质量标准(如性能指标、测试通过率)才退出循环,输出最终优化后的代码。
-
人机协作模式 (Human-in-the-Loop Pattern)
- 例子: 医疗影像辅助诊断。AI智能体分析医学影像(如X光片、CT扫描),识别出可能的异常区域,并给出初步诊断建议和置信度。由于医疗诊断的严肃性,系统会将AI的分析结果和标记的区域提交给人类医生(操作员)。医生审查AI的建议,结合自己的专业知识做出最终诊断决策。或者,在模棱两可的情况下,AI请求人类专家提供额外信息或判断,然后基于人类的输入继续处理。
希望这些更具体的例子能帮助你更好地理解这七种模式的应用场景。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~