一文彻底搞懂SOTA模型 - Faster R-CNN(2016)

Faster R-CNN是一种基于卷积神经网络(CNN)的目标检测算法,旨在实现高效、准确的目标检测。它主要包括特征提取器、区域提议网络(RPN)和分类器三个部分,这三个部分协同工作,使得Faster R-CNN能够在单个神经网络中同时实现目标检测和特征提取

在ILSVRC2016的图像目标检测任务中,国内团队大放异彩,包揽了该任务的前五名。这些团队大多采用了ResNet/Inception网络结合Faster R-CNN框架的方法,并注重网络的预训练、改进RPN(Region Proposal Network)、利用Context信息等策略来提升检测性能。

Faster R-CNN

一、Faster R-CNN

****Faster R-CNN**是什么?**Faster R-CNN是一种用于目标检测的深度学习模型,它结合了卷积神经网络(CNN)和区域提议网络(RPN)来实现高效和准确的目标检测。

目标检测(Object Detection)是计算机视觉中的一项任务,旨在识别图像或视频中的目标物体,并确定其位置(如边界框)和类别

Faster R-CNN能够识别图像中的多个目标,并给出它们的位置和类别信息。它利用CNN提取图像特征,通过RPN生成候选区域,经RoI Pooling/Align处理后,分类器预测类别,回归器微调边界框,实现目标检测。

什么是区域提议网络(Region Proposal Network,RPN)RPN是Faster R-CNN架构中的一个关键组件,它主要用于生成可能包含目标物体的候选区域**(也称为提议区域或锚框)****。**

**RPN首先接收由卷积神经网络(如VGG、ResNet等)提取的图像特征图作为输入。**然后在特征图上,RPN使用一种滑动窗口的方法来扫描图像,生成多个预定义的锚框。这些锚框有不同的尺寸和比例,以覆盖不同形状和大小的目标物体。

**最后RPN预测两个输出,一个是锚框包含目标物体的概率(对象分数),另一个是边界框回归调整参数。**对象分数用于区分前景(含有目标物体)与背景,而边界框回归调整参数则用于精调锚框的位置,以更准确地匹配到真实目标物体。

**什么是感兴趣区域池化(RoI Pooling)**RoI Pooling是一种常用于目标检测中的技术,主要用于将不同大小的候选区域(Region of Interest,RoI)统一到相同的尺寸,方便后续的处理,如分类或边界框回归

****什么是感兴趣区域对齐(RoI Align)****?****RoI Align的主要功能是从特征图中提取固定大小的特征区域,这些特征区域对应于输入的边界框。****与RoI Pooling相比,RoI Align能够更精确地提取特征,避免了量化误差,从而提高了目标检测的准确性。

二、网络结构

******Faster R-CNN的网络结构**是什么?****Faster R-CNN利用预训练的卷积神经网络提取特征,通过区域提议网络(RPN)生成候选区域,经过ROI Pooling将候选区域特征转换为固定大小,最后通过分类和回归网络对候选区域进行类别判断和边界框优化,并采用多任务损失函数进行训练。

一、特征提取部分

Faster R-CNN通常使用预训练的卷积神经网络(CNN),如VGG或ResNet,作为特征提取器。将输入图像通过一系列卷积层和池化层,提取出特征映射(Feature Map)。此过程将输入图像转换为更小的高维特征表示,保留重要的视觉信息。****

二、区域提议网络(RPN)

RPN是Faster R-CNN的关键创新点之一,它直接从基础网络生成的特征图中产生候选区域。RPN利用3×3滑动窗口在特征图上遍历,为每个位置生成锚框,并通过分类分支预测锚框的前景/背景概率通过回归分支输出边界框偏移量,从而判断锚框是否包含对象并调整其位置以匹配真实对象。

三、ROI Pooling(Region of Interest Pooling)

Faster R-CNN将通过RPN获得的候选区域在特征映射上进行ROI Pooling,将不规则大小的候选区域变换为固定大小的特征图,以便后续的全连接层处理

四、分类和回归网络

Faster R-CNN将ROI Pooling后的特征被送入两个并行的全连接层。一个负责对候选区域进行类别分类,判断目标类别;另一个则进一步优化候选区域的坐标,进行边界框回归,进一步调整目标框位置和大小。

五、损失函数

Faster R-CNN的训练涉及到多个子任务,因此采用了多任务损失函数。总损失是由分类损失(交叉熵损失Cross Entropy Loss)和回归损失(平滑L1损失Smooth L1 Loss)组成。

分类损失用于训练RPN和分类分支;回归损失则用于优化RPN提出的边界框以及最终输出的边界框。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值