自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(78)
  • 收藏
  • 关注

原创 人工智能证书合集

本文将对目前市面上主流官方机构颁发的人工智能证书进行整理和介绍,由于整理的证书较多,本文共一万八千多字,请根据自己的考证需求阅读对应部分的内容,希望本文对人工智能行业的从业人员和计划从事人工智能相关岗位工作的人员有所帮助。文章结尾附了证书报名流程!

2024-11-01 16:55:48 1024

原创 从Hinton获得今年的诺贝尔物理学奖说起

可以说,在很多AI从业者的书架上,都能找到一本被翻阅得有些破旧的书籍——《深度学习》(Deep Learning),这本书是深度学习领域的重要参考文献之一,它详细介绍了深度学习的基本原理和技术实践,成为了许多技术人员的床头读物。随着技术的不断进步和社会的发展,人工智能将成为推动社会发展的重要力量,而学习和掌握这一领域的知识,也将为个人的职业生涯增添无限的可能性。他不仅推动了技术的发展,还激励了新一代科研人员,让他们相信,即使在不被看好的情况下,也应坚持自己的信念,直到世界追上自己的步伐。

2024-10-09 17:53:35 1212

原创 目标检测技术的发展:从R-CNN、YOLO到DETR、DINO

OV-DINO的出现标志着在开放域目标检测领域的重大进步,其在处理未见过的物体类别时的能力得到了显著提升。这项技术对于需要适应未知或变化环境的应用具有重要意义,如自动驾驶、机器人视觉、安防监控等。

2024-09-30 16:33:15 1251

原创 物体识别之微特征识别任务综述

这一领域面临的挑战是如何在提高识别精度的同时,应对复杂多变的环境因素,比如光照条件、遮挡问题以及动态环境下的识别难题。同时,如何通过技术手段有效防止欺诈行为也是一个重要的课题。在电商领域,推荐系统可能需要分析商品的图片来识别产品的样式、颜色等属性,同时也要考虑用户留下的评价文本,从中提取情感倾向和具体的反馈信息。有些分类识别任务可能会同时涉及多种类型的数据,包括图像、视频和文本等,这样的复杂任务要求系统不仅要具备处理单一类型数据的能力,还需要能够综合分析多种数据源的信息,以达到更准确和全面的结果。

2024-09-14 18:13:12 1837

原创 目标检测之困难目标检测任务综述

在困难目标检测领域,常用的评估数据集包括COCO和PASCAL VOC等,这些数据集不仅提供了丰富的训练和测试样本,还特别支持对小目标、遮挡目标、模糊目标等困难目标的检测评估。数据增强增加了模型的鲁棒性,模型架构改进提高了模型的表达能力和泛化能力,先进的后处理技术优化了最终的检测结果,特征融合增强了模型对不同大小和形状目标的识别能力,上下文建模帮助模型更好地理解目标所在的场景,多模态信息融合提供了更多的线索,帮助模型更好地识别目标。这导致了特征信息的缺失,使得传统的特征提取方法难以有效地捕捉到足够的细节。

2024-08-27 19:11:08 1410 1

原创 目标检测研究方向——开放域目标检测

训练完成后,模型仅能识别训练数据中出现过的类别。从模型能力上看,在封闭域目标检测中,模型被设计为只识别训练时提供的预定义类别,并且假设测试图像中只会出现这些已知类别,模型通过大量的训练数据来学习这些预定义类别的特征,并进行优化,确保在这些类别的识别上达到最佳效果;相比之下,开放域目标检测要求模型不仅要能够识别训练时提供的已知类别,还需要能够处理在测试数据中可能出现的未知类别,模型需要具备较强的泛化能力,能够在面对未知类别时做出合理的响应,如识别出这是一个未知类别,而不是错误地将其归类为一个已知类别。

2024-08-10 11:52:18 585

原创 神经网络新范式——LNDP:可终身学习的自主发育程序

LNDP使得人工神经网络能够以活动和奖励依赖的方式实现突触和结构的可塑性,并桥接了间接发育编码(indirect developmental encoding)和元学习的可塑性规则,并提出了Evolving Self-Assembling Neural Networks(进化自组装网络)。这意味着神经网络终于可以根据具体任务进行自主连接和生长发育了,而非以往固定的、静态的、完全连接的方式。

2024-07-24 16:38:39 1341 2

原创 2024高考作文引发的人工智能争议

他们建议,高考作文命题应当引导学生批判性地分析人工智能技术的社会影响,探讨如何实现技术进步与人类福祉的和谐共生,如何在享受科技便利的同时,加强人工智能的安全管理与伦理规范,以规避潜在的灾难性后果,确保人工智能的未来真正掌握在人类手中,促进社会的可持续发展。因此,这一作文命题的设置,实质上是对学生的一种警醒,也是对教育方向的一种提示:在技术快速迭代的今天,如何在享受技术便利的同时,培养和维护个体的深度思考能力,保持对知识的渴望和对未知的好奇心,是每个人都应认真思考的问题。

2024-06-07 23:07:19 1191

原创 扩散模型的技术原理和应用价值

在物理和材料科学研究中,扩散模型被用来预测和优化材料的性质,如通过模拟“炼金”过程,快速探索新材料的合成路径,特别是对于复杂体系,其预测的准确性与速度优势将更加凸显。通过连续的噪声注入步骤,模型学习了如何从一个复杂的数据分布出发,通过一系列确定性的转换,最终达到一个简单的已知分布(高斯噪声分布),这一过程为后续的反向扩散学习提供了基础。通过上面的应用场景可以看出,扩散模型在增强语言模型的多样性方面,不仅能够提升内容的创新性和吸引力,还能促进个性化和定制化内容的生成,为自然语言处理技术带来更广阔的应用空间。

2024-06-03 16:47:08 909

原创 全面解析OpenAI的新作——GPT-4o

GPT-4o作为GPT-4级智能的集大成者,其无与伦比的性能和多模态交互能力,标志着AI技术已经跨过了单纯的文字理解与生成,迈向了一个能理解、回应乃至预测用户多维度需求的新阶段,真正意义上做到了智能服务的全民触达。此外,GPT-4o的远程协助能力也得到了充分展示。一位模拟工程师提出一个复杂的算法优化问题,GPT-4o不仅迅速提供了多条可行的解决方案,而且还自动生成了一段简洁明了的代码示例,并通过内置的代码解释器,以易于理解的语言向在场观众阐述了每行代码的功能与逻辑,这一过程仅仅耗时几秒钟。

2024-05-14 18:08:44 1248

原创 自回归模型的优缺点及改进方向

在学术界和人工智能产业中,关于自回归模型的演进与应用一直是一个引发深入讨论和多方观点交锋的热门议题。尤其是Yann LeCun,这位享誉全球的AI领域学者、图灵奖的获得者,以及被誉为人工智能领域的三大巨擘之一,他对于自回归模型持有独特的批判视角。值得注意的是,自回归模型作为基础架构,支撑着当前备受瞩目的GPT系列大型语言模型(LLMs)的学习与预测机制,这些模型在自然语言处理领域展现出了革命性的影响力。LeCun教授不仅在其专业领域内享有崇高的声望,而且以其敏锐的洞察力和直言不讳的态度著称。

2024-05-11 12:58:53 1321

原创 探讨自回归模型和扩散模型的发展应用

为提高模型效率,研究者提出了多种快速采样算法,如DDIM(离散扩散模型)和ADM(加速扩散模型),这些方法能够在保证生成质量的前提下,显著减少反向扩散所需的步骤数,从而大幅缩短生成时间。此外,还出现了如半扩散模型这样的新型架构,它结合了扩散模型与传统生成模型的优点,能够在更低的计算成本下生成高质量样本。例如,在音乐创作场景中,一个混合模型可以先根据用户提供的旋律片段或风格标签进行自回归式的后续旋律生成,再通过扩散过程优化生成音乐的质量和细节,确保生成的乐曲既符合用户预期又具有专业级音质。

2024-04-24 13:22:14 1525

原创 人工智能时代创作者的抗议!

随着AI替代工具的广泛应用,来自各行各业的反对声音会越来越多,无论是作家群体对人工智能写作可能取代人文创作的忧虑,还是作曲家们对AI谱曲可能削弱音乐原创性与个性表达的异议,甚至是影视行业对AI剪辑和生成内容可能颠覆传统创作模式的警惕,这些抗议的核心动机都指向一个共通点:人类在捍卫自身的劳动成果与职业尊严,力求保护长期以来在各自领域积累的智力产权与精神财富。至于音乐创作,则常常源自生活中的点滴声响,那些无意间捕捉到的旋律、节奏、情感波动,经过艺术家内心的体验和匠心独运的编排,得以转化为美妙的音乐篇章。

2024-04-12 19:13:21 799

原创 「他山之石」:大模型时代的“小模型”

拿RTX 4060 Ti显卡为例,该系列推出了8GB和16GB不同显存容量的版本,对于参数量较大的模型,特别是20亿参数等级的模型,16GB显存版本无疑提供了更为宽裕的工作空间,这对于入门级和中级人工智能项目,如涉及大规模模型训练、复杂图像渲染或是高性能计算密集型应用,都能够提供必要的显存支持。这些模型都是在2024年发布的。然而,这样的策略也带来了一个悖论:若大幅度削减大模型的参数量以适应有限的计算资源,那么理论上讲,其原有的规模优势和丰富的表达能力将会削弱,从严格定义上可能就不再符合“大模型”的标准。

2024-03-25 18:31:14 850

原创 AI通识教育:可能是我们领先于世界AI的关键

这一课程的开设和发展,对人工智能教育的普及和专业人才的培养起到了积极推动作用,它不仅有助于提升学员对人工智能的认知水平,更是在一定程度上弥补了当前市场上对具备理论素养和实战能力双重特质的人工智能专业人才的巨大需求。但实际上,这种认知存在明显的局限性。其目标是通过这样的教育,使公众及各类专业背景的学习者能够理解人工智能的基本概念,掌握一定的AI技术素养,对于AI的发展,既不狂热吹捧,也不恐惧抗拒,能理性看待AI在日常生活、工作和社会发展中的作用和影响,培养具备跨学科视野和适应未来智能化社会所需的基本能力。

2024-03-04 14:01:48 1116

原创 Sora:继ChatGPT之后,OpenAI的又一力作

Sora生成的视频呈现出的是大片既视感,无论是镜头变化,还是光影色彩的转变,以及细微到纹理结构的变化,都呈现出了专业摄影师级别的效果;根据OpenAI的介绍和愿景,Sora不只是一个简单的视频生成工具,而是一个能够改变时代的“世界模型”,Sora的开发工程师表示,Sora通过观察大量数据,可以学会许多关于世界的物理规律,这可以被用来模拟真实世界中的事件发生时的状况,比如智能机器人,自动驾驶等。最终发现,在具有高度描述性视频字幕的训练中,不仅可以提高文本的忠实度,还可以提升整体视频的质量。

2024-02-17 00:32:10 1709

原创 大模型基础架构的变革:剖析Transformer的挑战者(下)

目前业内对将LLM应用于长文本进行了广泛的研究,主要关注三个领域:长度外推、上下文窗口扩展,以及提高LLM对长文本的利用。.长度外推的目的是使在较短文本上训练的语言模型能够在测试过程中处理较长的文本。一个主要的研究途径是开发Transformer模型的相对位置编码方法,使它们能够在训练窗口之外发挥作用。上下文窗口扩展集中于扩展LLM的上下文窗口,允许在一次向前传递中处理更多的token。一个主要的工作方向是解决训练效率的问题。考虑到Transformer在训练过程中存在对注意力计算随token增长的

2024-02-09 17:33:31 1162

原创 大模型基础架构的变革:剖析Transformer的挑战者(中)

上一篇文章中,我们介绍了RetNet、RWKV、Mamba等有可能会替代Transformer的模型架构,这一篇文章我们将要介绍另外三个有可能会替代Transformer的模型架构,它们分别是UniRepLKNet、StripedHyena、PanGu-π,想了解之前的内容,请前往《》一文查阅。

2024-02-01 11:53:00 1323

原创 大模型基础架构的变革:剖析Transformer的挑战者(上)

随着大模型在应用层面的发展,支撑大模型的底层架构模型Transformer所存在的各种问题也逐渐显现,业内一直都在寻找Transformer框架的替代方法。有在原Transformer架构基础上微调改良的,也有采用传统RNN模型的思想的架构,还有以CNN为基础模型的架构,更有将Transformer和其他RNN、CNN架构结合的混合架构模型。无论模型如何变化,目的都是为了更高效地完成任务。目前的大模型的基础架构改良和重设计,都是在三大基础架构之上进行的革新,即。

2024-01-22 17:36:17 1338

原创 2024,AI Agent的密集爆发之年

这样可以节省用户的时间,让用户有更多的时间去处理更重要的事情。Apple Vision Pro为了实现用户的导航需求和与空间内容的交互,引入了一种全新的输入系统,这种设计,使得用户的操作更加直观和便捷。C端市场也是真正的造富矿场,纵观全球高市值公司无一例外都是C端市场,而C端市场的用户也最挑剔,因为C端面向的是不同的个体,想要将不同个体的需求爱好统一,确实很难,但是正因为如此,优质的产品研发公司才会真正致力于为人类发展而奋斗,开发出每个人都喜欢的产品,2024年注定是AI Agent激烈竞争的开始。

2024-01-11 20:14:37 1136

原创 Transformer架构的局限已凸显,被取代还有多久?

江山代有才人出,各领风骚数百年。这句话无论是放在古往今来的人类身上,还是放在当今人工智能领域的大模型之上,都是最贴切不过的。无论是一个时代的伟人,还是统治一个领域的技术,最终都会有新的挑战者将其替代。Transformer作为大模型的统治者,自从出现之后,就以其强大的语言理解能力击败了RNN模型,迅速占据了NLP领域的榜首,之后又是抢占了CNN主导的图像领域,成为了整个领域的王者,在之后很长一段时间内地位都稳固如初。

2024-01-09 17:32:49 1253

原创 2024年人工智能领域10大预测

2023年人工智能领域如果只能筛选一个关键词的话,恐怕非“大模型”莫属。大模型的发展在过去一年中,让各行各业发生了天翻地覆的变化,有企业因大模型而新生,有企业因大模型而消亡。企业的变迁跟技术迭代息息相关,而大模型就是新一代人工智能技术下的产物,大模型已经深入各行各业对具体业务进行了全方位的干预,可以说未来没有一个行业能脱离AI大模型的影子。新年伊始之际,人工智能的的发展也将进入下一阶段,对社会生产的改变也将更加明显,下面是根据过去一年人工智能的发展现状对未来一年人工智能发展的预测。

2024-01-01 21:06:23 1531

原创 生成式AI大模型对人类进化的影响

你是不是发现每天的工作都离不开ChatGPT之类的语言生成模型?离不开类似Midjourney的图像生成模型?离不开一些设计类的AI辅助工具?如果是,那说明你已经逐步被AI侵蚀了,你的创造力也正在逐渐下降,大模型正在剥夺你的创造力。不可否认,生成式大模型的出现,加速了的人类的发展,但是同时也正在逐渐剥夺着人类的创造力,到最后的结果可能就是大部分人类都会依靠AI来进行社会生产活动。

2023-12-22 18:44:57 542

原创 大模型的研究新方向:混合专家模型(MoE)

混合专家模型的实现涉及对专家模型和门控网络的联合训练,在整个数据输入处理的过程中,门控网络起到了动态调配专家模型资源的关键作用,使混合专家模型能够灵活地适应不同的输入数据分布和任务要求。说到这里的“门”概念,与LSTM网络的“门”概念有所不同,MoE的“门”概念主要是用于匹配数据和专家模型之间的连接,就好比不同班级的学生要进不同的教室上课一样,而LSTM的“门”概念主要是一种控制信息流动的装置,它可以保留或通过一定比例的数据,更像是在控制流量,而MoE的“门”概念可以看作是选择要通过的对象。

2023-12-13 15:42:13 1880

原创 【论文解读】:大模型免微调的上下文对齐方法

具体来说,通过分析基础LLMs和alignment-tuned版本在令牌分布上的差异,作者发现在大多数情况下,它们在解码上表现几乎相同,主要的变化发生在文体方面,如话语标记和安全声明。通过URIAL的成功应用,作者提出了一个引人深思的观点,即通过巧妙的提示和上下文学习,可以显著减小无调整和基于调整的alignment方法之间的差距。这暗示在SFT过程中,令人瞩目的是,在强基础LLMs(如Mistral-7b和Llama-2-70b)上,URIAL的性能优于经过SFT或SFT+RLHF对齐的LLMs。

2023-12-07 18:39:25 1217

原创 【论文速递】:老驾驶员轨迹数据中的异常行为检测

在本文中,我们提出了一种边缘属性矩阵,该矩阵可以表示时间详细的轨迹数据集的关键属性并识别异常驾驶行为。本文涉及的问题是在给定道路网络和一组轨迹数据的情况下,如何检测驾驶员在行程中表现出的显著方向偏差、急刹车和急加速等异常行为。在问题的定义中,作者将一次行程表示为一个有向图,节点代表道路网络上的空间位置,边代表道路段,每条边都有时间详细的驾驶属性。工信部教考中心的人工智能算法工程师,人社部的人工智能训练师,中国人工智能学会的计算机视觉工程师、自然语言处理工程师的课程培训,以及证书报名和考试服务。

2023-11-30 14:36:05 973

原创 游戏AI:游戏开发和运营的新增长点

游戏AI技术在游戏的开发和运营过程中有众多方向的应用,包括游戏情节策划、地图生成、关卡设置、任务生成、对话生成、故事叙述、模型生成,以及游戏内的成长系统和经济系统等规则的生成。目前AI技术在游戏产业的应用才刚刚开始,未来将会有更多的AI技术被应用在游戏领域,为游戏的开发和运营提高效率、降低成本,也为游戏玩家们带来不同的体验。除了利用游戏AI来自动生成关卡和地图,或者在游戏中生成可交互的角色和故事情节之外,游戏AI还可以帮助游戏开发者快速生成一些简单的游戏,如休闲游戏和小游戏等。

2023-11-13 20:03:18 403

原创 从单模态到多模态,自主AI离我们还有多远?

其中,监督学习可以用于生成基于样例的代码,无监督学习可以用于生成结构较为简单的代码,强化学习可以用于生成复杂的、需要优化的代码。高阶的自主AI的核心是拥有自主意识,它完全能够根据自己的偏好选择执行任何任务,这也是真正意义上的自主,我们称之为“真自主AI”,当然到那个时候,人类和AI 是什么关系,也就无法界定了。“多模态大模型+小模型”的模式是指在多模态人工智能中,使用一个大的预训练模型来理解和处理多种类型的数据,然后结合一个或多个小的模型来进行特定任务的微调。理论上,这是可以的。

2023-10-30 17:30:05 493 2

原创 大模型的背景与现状问题

谈起大模型,第一时间想到的是什么?是主流的ChatGPT?或者GPT4?还是DALL-E3?亦或者Midjourney?以及Stablediffusion?还是层出不穷的其他各类AI Agent应用工具?大模型在2023年突然遍地开花,井喷式发展,尤其是后半年,几乎大部分科技公司、学术团体、研究机构、以及学生团队都在发布各自的大模型,感觉大模型突然从洛阳纸贵到了唾手可得。

2023-10-16 18:50:17 1130

原创 【深度思考】:人工智能的发展会带来生产力和生产关系的变革吗?

AI将会是一个类人的生产工作者,它不需要人类操作,它会根据算法模型的设计,进行自我学习,自我发展,为人类创造更多价值,为国家、为社会产出更高的GDP,而这一切都是它自我完成的。现在有很多国家都面临着人口老龄化结构的现象,包括了欧洲大多数国家,亚洲的日本、韩国、以及去年首次出现人口负增长的中国,都面临着未来严重短缺的劳动力,甚至将退休年龄延迟,但是我们知道这并不是解决人口老龄化的有效手段,延迟退休年龄只能延缓和降低一部分的劳动力短缺,并不能从根本上解决人口老龄化所带来的长期性的劳动力短缺和社会发展的停滞。

2023-09-27 14:36:36 376

原创 数字人技术发展和应用分析

计算机图形学中的渲染技术,将这个数学模型转化为三维人脸模型,并且在这个基础上,利用一系列的算法和技术,包括纹理映射、法线贴图、光照模型等,使得数字人脸看起来更加真实。那么数字都有哪些特征呢?数字人可以使用深度学习语音合成技术来产生自然流畅的语音,甚至可以模仿某个指定人的音色和说话习惯来发音,还要能够进行人类的自然语言对话,书写流利的文本语言,它们可以回答问题、交流信息等。随着传感器技术和软件算法的不断发展,现在的运动捕捉系统能够以更高的精度和速度捕捉人类的动作,从而产生更逼真的数字人形象。

2023-09-19 20:59:18 716

原创 AIGC之文本内容生成概述(下)—— GPT

2020年5月28日,OpenAI发布新模型GPT-3。GPT-3被设计用来回答各种自然语言问题,并提供相关的知识和信息。同年6月11日,OpenAI将GPT-3以API的方式向学术机构、商业公司和个人开发者提供了一些需要申请的体验资格,并在同年9月将GPT-3授权给微软公司。对于所有任务,通过纯文本来指定任务和少量样本,GPT-3可以在无需任何梯度更新或微调的情况下被使用。对于GPT-3生成的新闻文章,评估员甚至无法区分其与人类撰写的新闻文章。GPT-3在GPT-2的基础上进行了改进和扩展。

2023-09-09 12:00:00 858

原创 AIGC之文本内容生成概述(下)—— BERT

BERT的主要原理是通过使用无标签的大规模文本数据进行预训练,学习到通用的语言表示,并在下游任务上进行微调,属于pretraining+fine tuning的学习模式。BERT的关键思想是双向编码器和Transformer自注意力机制。关于自注意力机制在上面的Transformer模型中已经有了详细的介绍,接下来简单介绍一下BERT模型中的双向编码器和它的结构及运行过程。

2023-08-19 12:00:00 444

原创 人工智能行业岗位一览

在这些岗位中,排名第一的人工智能算法工程师是所有岗位中的核心岗位,因为人工智能之所以有智能,就是因为算法的存在,在人工智能的构成要素中,算法相当于人类的大脑,可以想象一下,没有了大脑的人类会是怎么样。此外,由于人工智能算法工程师是针对所有人工智能应用场景的算法研发,所以掌握了人工智能算法工程师的技能知识,也会很快能平替到其他相关岗位,比如深度学习工程师、计算机视觉工程师、自然语言处理工程师、语音识别工程师、强化学习工程师、人工智能售前工程师、人工智能产品经理等岗位。

2023-08-09 20:08:54 3057

原创 AIGC之文本内容生成概述(下)——Transformer

在基于Transformer的编解码结构出现之前,也有基于RNN和LSTM的Seq2Seq的编解码结构网络,它在编码部分和解码部分所使用的是RNN或LSTM模块,和基于Transformer的编解码结构相比,RNN和LSTM模块在参数量和注意力机制这一块是区别最大的,Transformer由于全连接的模块设计,加上对数据集全领域的注意力施加,使得其在参数量和效果上远远高于使用RNN和LSTM模块的Seq2Seq编解码结构。解码器的作用是将编码器的输出和自身的输入进行交互,生成最终的解码结果。

2023-07-16 12:50:36 1936

原创 AIGC之文本内容生成概述(上)

想要更好地了解AI在文本生成方面的内容,就需要从自然语言处理方向的技术发展和应用开始。我们将以深度学习在自然语言处理中的技术应用场景作为方向,对主流的文本生成模型进行剖析,下面是对LSTM、Word2Vec、GloVe、ELMo、Transformer、BERT、GPT等多个具有代表性的深度学习文本处理技术的详细介绍,并且对每种技术的优缺点以及应用场景进行了分析。

2023-06-20 21:39:00 741

原创 AI的发展将会产生一个新的阶层

现在很多的AI工具在人类的指导学习下,已经能够实现自我学习了,前段时间出来的Auto GPT就是一个通过自我学习能够自动连续提问和回答的AI模型,Chat GPT的发展和当年的Alpha Go一样,Alpha Go开始是学习人类的棋谱,然后才能战胜人类,后来Alpha Go的研发团队人员去除了人类的干预,让模型自我学习,从而进化出更加强大的模型。当一只熊追来的时候,你是跑不过它的,但是你只需要跑过你的同伴就能活下来,这或许就是所谓的内卷了,但是社会如此,谁不想过的更好呢,要过的更好,就注定要内卷。

2023-05-26 10:00:00 469

原创 AIGC之图像生成内容介绍

综合来看,各种生成图像的技术都有自己的优点和局限性,在不同的应用场景中需要选择适合的技术。图像生成是指通过计算机算法和模型生成新的图像,这些图像可能是完全虚构的、艺术创作的、或者是根据现有图像进行修改和增强的。- DSTD深度学习模型:Stable Diffusion 还使用了一种名为 Deep Stable Diffusion (DSTD) 的深度学习模型,该模型结合了神经网络和 stable diffusion 算法,能够自动学习和调整噪声的统计特性,从而生成更加真实和细致的图像。

2023-05-17 12:30:00 1926

原创 AIGC技术发展和应用方向

AIGC(Artificial Intelligence Generated Content)是指通过人工智能技术生成的各种文本、图像、音频和视频等多媒体内容。AIGC技术是机器学习和自然语言处理等技术的结合,通过对海量数据的学习和分析,可以让计算机模拟人类的创造力和判断力,自动生成符合人类需求的内容。AIGC技术的发展可以追溯到上世纪50年代,当时计算机科学家就开始尝试使用计算机生成语言模型。随着机器学习和深度学习等技术的不断发展,AIGC技术得到了快速的发展,并在各个领域得到了广泛的应用。

2023-05-09 13:32:48 4998

原创 如果建立一个由AI组成的社会……

近期国外有人发布了一个专门为AI而创建的社交平台—Chirper,它就像 Twitter 一样,可以在上面进行任何社交活动,不同的是Twitter账户的后面是真实的人类,而Chirper的后面则是AI,是的,你没有听错,Chirper平台的后面是成千上万的AI自动生成的内容,没有一个人类,因为人类是被禁止的,这些AI它们或扮演着学生、或扮演家庭主妇、或扮演公司职员,总之,这就是一个由AI组成的虚拟社交平台。这类模型可以单独赋予AI作画的能力,视觉模型就比较多了,可以随意选择,类似的。

2023-04-25 14:17:21 1111

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除