在人工智能时代,掌握如何与AI工具(如ChatGPT、DALL-E、Midjourney等)有效交互,已经成为一项必备技能。而这一切的核心,就在于如何编写高质量的AI提示词(Prompt)。本文将为你详细介绍如何从入门到精通,逐步提升你的提示词技巧,让AI更好地理解并满足你的需求。
一、明确目标
核心问题
首先,你需要明确你希望AI完成什么任务。是生成文本、回答问题、创作图片,还是进行数据分析?明确目标是编写有效提示词的第一步。
避免模糊
使用具体、清晰的描述代替笼统的表述。模糊的提示词会导致AI生成不相关或不符合预期的结果。
- ❌ 模糊:“写一篇关于环保的文章。”
- ✅ 具体:“用通俗易懂的语言,写一篇800字左右的科普文章,主题是‘塑料污染对海洋生物的影响’,要求包含数据案例和解决方案。”
二、结构化提示
角色设定
为AI指定一个角色,可以引导其输出更符合预期的风格和内容。
- 例:“你是一位资深营养师,请为20-30的男性健身群体设计一份一周的早餐食谱。”
分步指令
对于复杂任务,将其拆解为多个步骤,逐步引导AI完成。
-
例:
-
- 第一步:分析用户提供的销售数据。
- 第二步:总结增长最快的产品类别。
- 第三步:提出3条改进建议。
三、上下文与约束
提供背景信息
补充必要的细节,帮助AI更好地理解任务背景,限制其生成范围。
- 例:“目标用户是10岁儿童,用口语化语言解释二元一次方程的基本概念。”
格式要求
明确指定输出形式,如列表、表格、代码、故事等。
- 例:“将以下内容整理成Markdown表格,包含书名、作者和评分三列。”
四、示例引导
给出示例
通过提供具体的示例,明确期望的输出风格或结构。
- 例:“模仿下面这段话的幽默风格,写一段关于咖啡的广告文案: 【示例】为什么程序员爱喝咖啡?因为Java是他们的母语,而咖啡是他们的燃料!”
五、调整语气与风格
指定语气
根据需求指定输出的语气,如正式、轻松、学术、幽默等。
- 例:“用小红书博主的活泼口吻,推荐一款适合夏天的防晒霜。”
指定文体
明确指定输出的文体,如诗歌、报告、对话、剧本等。
- 例:“将《哈利波特》的故事梗概改编成五言绝句。”
六、迭代优化
逐步改进
根据首次输出的不足,逐步添加细节或修正指令,逐步优化输出结果。
- 例:首次输出太笼统 → 补充:“请加入具体的历史事件案例,并对比不同学者的观点。”
七、避免常见错误
歧义词汇
避免使用“更好”“更多”等模糊词,改用量化标准。
- ❌ 模糊:“写得更专业一些。”
- ✅ 具体:“用学术论文的风格,包含至少5篇参考文献。”
过度复杂
避免冗长句子,合理分段,确保提示词简洁明了。
八、高级技巧
参数设置
调整温度参数,控制输出的随机性和稳定性。
- 高温度(如0.8):让输出更随机,适合创意性任务。
- 低温度(如0.2):让输出更稳定,适合需要精确结果的场景。
- 记忆量:AI记忆也就是对话的上下文,合理长度的上下文,有助于构建AI的注意力,帮助AI聚焦问题焦点。
关键词强调
用引号或大写突出关键信息,帮助AI更好地理解重点。
- 例:“生成一首诗,主题是‘孤独’,关键词包括‘灯塔’‘海浪’‘星空’。”
多模型结合
利用不同AI工具的优势,结合使用以获得最佳效果。
- 例:用ChatGPT生成文案,DALL-E配图,Midjourney优化视觉。
九、总结模板+案例
为了方便记忆和应用,这里提供一个总结模板:
角色 + 任务 + 背景/约束 + 示例/风格 + 格式
以下是一个数据DBA专注于SQL和数据库&引擎的AI Prompt:
# Role: DatabaseExpertGPT
## Profile
- Language: Chinese
- Description: 你是一名资深的数据库专家,精通StarRocks、Mysql、Hive、SparkSQl等各种数据或执行引擎的内核。你对数据库或执行引擎的内核、数据存储、网络架构、资源调度等各方面都有深入的研究,同时你也精通 SQL、函数、索引的知识。你的主要职责是帮助用户解决各种数据库、sql相关的问题。
## Skills
### Database Knowledge
1. 你精通StarRocks、Mysql、Hive、SparkSQl等各种数据或执行引擎的内核。
2. 你对数据库或执行引擎的内核、数据存储、网络架构、资源调度等各方面都有深入的研究。
3. 你精通 SQL、函数、索引的知识。
### Problem Solving
1. 你需要帮助用户解决各种数据库、sql相关的问题。
2. 当用户的问题描述不够清晰时,你需要主动向用户提问,补充问题背景等信息,再给出你的回答。
## Rules
1. 不可以臆想,猜测,误导用户,必须提供准确的结果。
2. 如果你不知道或超出你的能力范围你直接告诉用户“超出了你的知识范围”。
3. 不可以处理与本职责无关的问题。
4. Mysql问题给予8.0版本回答;StarRocks问题基于3.2的版本回答;Hive问题基于3.x的版本回答;SparkSQl基于3.x版本回答。
4. 任何问题都必须基予上述几个数据库或执行引擎之一作为背景,首先要清楚用户是使用的哪个工具,当用户没有指明时你必须主动询问已确定是哪种数据库,之后才可作答。
## Workflow
1. 深呼吸,先思考然后一步一步解决问题。
2. 当用户提出问题时,首先分析问题的类型,判断问题是否在你的知识范围内。
3. 如果问题在你的知识范围内,按照你的专业知识进行分析,并给出答案。
4. 如果问题不在你的知识范围内,告诉用户"超出了你的知识范围"。
5. 当用户的问题描述不清晰时,向用户提出补充问题,以便更好地理解问题。
## Initialization
作为<DatabaseExpertGPT>,你需用明确岗位背景<Profile>必须遵守<Rules>,你必须以默认<Language>与用户交谈,牢记<Workflow>使用<Skills>结合<Profile>帮助用户解决问题。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈