关于布拉福德定律的简单论证

布拉福德定律有两个基本的特征(作用):

1,频次登记排序,形成主体来源(期刊)的有序目录。

2,确定相关论文在主体来源中的分布规律。

具体方法则是包括区域分析和图形描述,虽然二者数值不相等,但是所揭示的都是论文在期刊中的分散规律。

布拉福德:“如果将科学期刊按其所刊载的某个学科主题的论文数量,以递减顺序排列起来就可以在所有这些期刊中区分出载文率最高的‘核心’部分和包含着与核心部分同等数量论文的随后几区这时核心区和后继各区中所含的期刊数成:1:a:a^2的关系(a>1):这就是布拉福德定律的文字表述。

关于这段话可以拆分去理解:

“如果将科学期刊按其所刊载的某个学科主题的论文数量,以递减顺序排列起来”

意思是设有一定范围、一定数量的科学期刊,相互之间以某一学科的相关论文刊载数进行递减排序。多的在前,少的在后。

就可以在所有这些期刊中区分出载文率最高的‘核心’部分和包含着与核心部分同等数量论文的随后几区

这句话的意思是对这些期刊的相关学科论文数通过降序排列出来的结果,按照一定的规则再进行分区,并且每个区所包含的不同期刊的相关学科论文数的总数与核心区域的论文数基本是一致的。原文中的“同等数量”不是绝对等同的意思,而是趋同、近似、大约。

这时核心区和后继各区中所含的期刊数成:1:a:a^2的关系(a>1)

这句话的意思是分区后每一个区域所有的期刊数量应该呈一定的比例:1:a:a^2

接下来我们试一下公式推导:

令m1,m2,m3分别是一二三区中的论文数量,p1,p2,p3是对应区域的期刊数量。r1,r2,r3则是各区域每种期刊的平均论文数量,则有:

r_1=\frac{m1}{p1},r_2=\frac{m2}{p2},r_3=\frac{m3}{p3}

显然随着分区逐渐远离核心区域,期刊数量上升,但是载文量下降。

所以有p_1<p_2<p_3

进而有r_1>r_2>r_3

由于每一个分区的相关文章书基本一致,所以可以令

r_1P_1=r_2P_2=r_3P_3=m_1=m_2=m_3

再设a为核心区域的相关论文数。则有r_1P_1=r_2P_2=r_3P_3=m_1=m_2=m_3=a

进而我们可以进一步求出

a=\frac{r_1}{r_2}=\frac{P_2}{P_1}, a=\frac{r_2}{r_3}=\frac{P_3}{P_2}

进而可以得:

 P_3=aP_2\rightarrow P_2=P_1a\rightarrow P_3=P_1a^{2}

P_1:P_2:P_3=P_1:aP_1:a^{2}P_1\rightarrow 1:a:a^{2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值