在2023年应届生就业的新动向中,AI大模型方向的职位数量激增,而其细分方向平均年薪达到了41.89万元。虽然职位数量明显增加,但是优秀人才仍供不应求,这或许源自近年来量化私募的快速发展。
深度学习职位年薪达41.89万元
近期,国内一家第三方网站发布报告,对今年应届生的就业新赛道进行了分析。
其中,AI大模型赛道敞开大门,设置岗位数量大增。报告显示,在就业的新赛道中,AI大模型应届生职位同比增长超过170%。
这一方向的薪资也让很多应届生心潮澎湃。报告里提到,AI大模型方向毕业生的平均年薪约为27.99万元。
具体到AI大模型赛道里的细分方向,算法工程师这一职位的占比最高,约10.61%,平均年薪在36.36万元。
深度学习这一职位的占比为3.09%,但薪资待遇最令人心动,为众多赛道中年薪最高的职位。报告显示,深度学习职位的应届生平均年薪高达41.89万元,远超应届生平均薪资标准。
其中,博士毕业生更是众多企业争抢的对象。在2023届博士应届生需求增长最多的TOP10新赛道中,AI大模型方向的博士毕业生需求同比增长了430%。
行业发展催生职业需求
值得注意的是,近些年量化私募的快速发展或进一步催生了AI大模型方向的职位需求。
“虽然规模较海外市场存在一定差距,但行业未来发展潜力巨大。”百亿级量化私募灵均投资首席投资官马志宇表示,从规模维度来看,国内量化投资起步较晚,从萌芽、初生到快速发展不过十几年时间。
人才是量化机构之间拉开距离的核心要素。量化私募仲阳天王星提出,量化投资对数理和金融有复合要求,虽然竞争激烈,优秀人才依然供不应求。
对优质人才的渴求导致了这一方向的人才待遇水涨船高。
近期,海外知名的大型投资机构城堡投资与城堡证券,向内地顶尖高校大一、大二的学生发出邀请,前往公司位于中国香港的办公室参观,了解这两家机构的内部运作模式,并全额承担全部费用。
鸣石基金相关人员也曾称,公司为所有员工提供六险一金和百万元商业医疗保险,还提供餐饮补贴、下午茶、团建等各种福利升级计划。此外鸣石基金还提出,只要符合招聘需求,待遇方面不设上限,足够优秀的人才甚至可以组建自己的投研团队。
无独有偶,灵均投资也为员工提供了员工基金、绩优奖励、高端医疗、定制福利、花式团建等员工福利。
究竟什么样的人才才能受到量化私募的青睐?
马志宇表示,量化投资属于交叉复合型学科,需要深厚扎实的数理、统计、计算机、金融等知识,此外,还需要勤奋、务实、自我突破的态度。
在对于应届生的选人标准上,马志宇称,基础的人员通常是通过公司内部“实习生留用”机制进行甄选。在实习期间,希望同学们各方面能力都得到充分展示和提升,另一方面希望能够找到真正认真投入、把事情做好的人。
仲阳天王星表示,目前量化机构的人才竞争更多停留在“招到人才”这个层面,但是后续的“培养人才”“留住人才”也很重要,这些综合起来才构成一家量化机构在人才方面的核心竞争力。
“深度的量化策略交流在对外平台上几乎不可能获得,只有在顶尖公司的团队内部才能进行学习。”马志宇说,在头部机构,导师以及身边的同事研究更前沿、更专精,这是一般的平台所无法提供的。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。