文章目录
- 概述
-
* 申请后直接使用大模型
- 开源可本地部署
- 通识数据集测评(C-Eval 、AGIEval、MMLU、SuperCLUE)
-
* 自媒体报道
- SuperCLUE:中文通用大模型综合性基准
- C-Eval:中英测评(清华上交提出)
-
* 当前排名(23.06.27)
- 数据集内容
-
* 具体的科目 如下图:
- 数据量与试题示例
- 论文中的测评结果
- AGIEval:微软 中英文评测
-
* 数据集内容
- 人类与国外主流模型差异
- MMLU : 英文试题
-
* 部分测评结果
- 试题内容
概述
中文英文模型,GPT-4性能是当着无愧的王者,但无法使用。中文评测平台
榜单比较混乱,看个人使用习惯。
模型汇总: https://github.com/wgwang/LLMs-In-China
申请后直接使用大模型
- 遇事不决-
ChatGPT
: https://chat.openai.com/ - 百度-文心一言:https://yiyan.baidu.com/
- 360智脑:https://chat.360.cn/
- 阿里-通义千问:https://qianwen.aliyun.com/
- 清华-chatGLM:chatglm.cn
- 科大讯飞-星火:https://xinghuo.xfyun.cn/
开源可本地部署
中文:清华60亿参数 ChatGLM2-6B
: https://github.com/THUDM/ChatGLM2-6B
通识数据集测评(C-Eval 、AGIEval、MMLU、SuperCLUE)
自媒体报道
百度文心大模型3.5(ERNIE 3.5)
中文能力突出,部分超过 GPT-4 的表现;综合能力稍逊于GPT-4,但是平均能力超过chatgpt
SuperCLUE:中文通用大模型综合性基准
评测地址:https://github.com/CLUEbenchmark/SuperCLUE
C-Eval:中英测评(清华上交提出)
论文
:一个用于基础模型评估的多层次多学科的中文评估套件
C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for
Foundation Models
当前排名(23.06.27)
该榜展示了,GPT-4在困难问题, 科学技术工程数学(STEM)上的强大准确的回答能力。
而chatglm在人文和社会科学方面遥遥领先。
数据集内容
具体的科目 如下图:
4个圈分别表示:
人文学科(humanities)
社会科学(Social Science)
STEM
是科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)四门学科英文首字母的缩写。
这些科目的不同颜色
表示四个难度水平:中学、高中、大学和专业水平(professional)。
数据量与试题示例
论文中的测评结果
测评方式,API或者开源模型(weights)
AGIEval:微软 中英文评测
论文
:AGIEval(一个以人为本的): A Human-Centric Benchmark for Evaluating Foundation
Models.
该基准选取20种面向普通人类考生的官方、公开、高标准的资格考试、包括普通大学入学考试(如中国的高考和美国的SAT考试)、司法考试、数学竞赛等
数据集内容
律师资格
考试 (lawyer qualification exams)、
国家公务员
考试 (civil servant exams)
GRE
(Graduate Record Examination)是美国研究生入学考试)
GMAT
(Graduate Management Admission Test)是经企管理类研究生入学考试)。
人类与国外主流模型差异
GPT-4
MMLU : 英文试题
测量大规模多任务语言理解:2009. Measuring Massive Multitask Language
Understanding
该测试涵盖了57个任务,包括基础数学(elementary mathematics)、美国历史、计算机科学、法律等等。
用以测量模型是否,具备广泛的世界知识
和问题解决能力
部分测评结果
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
试题内容
图来自论文
STEM
是科学(Science)、技术(Technology)、工程(Engineering)和数学(Mathematics)四门学科英文首字母的缩写。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。