长文干货!老程序员测评文心一言4.0模型代码能力!

目录

前言:老程序员聊聊AI和国产大模型

第一关:代码质量和可用性——写个可运行的游戏代码

第二关:需求理解和记忆能力——多轮对话下的任务能力

总结


前言:老程序员聊聊AI和国产大模型

大家好,我是一名老程序员了,大模型出来后我算是一直在尝试各种AI工具,尤其是AI辅助研发的方向(可能有点焦虑?),包括上个月的AI程序员Devin发布我也在关注,大模型的能力发展太快了,我还是想努力跟上。

我个人一直支持国产大模型
,也算文心一言的老用户啦,去年3月刚内测的时候就在用了,那时候特振奋,想着国内终于有一款大模型了,刚开始用的时候很坎坷啊,用起来一直达不到预期。

不过文心一言的模型能力还是在肉眼可见地变好
,我现在的情况是付费使用文心一言4.0模型(免费的3.5模型基本不用了),我的感官是文心一言4.0模型对比3.5在各个方面是有明显提升的
,迭代速度也更快(可能是商业化后会存在训练资源倾斜?),我看各大平台很少有一言4.0模型的测评,所以今天专门写一篇。


图片由文心一言4.0生成,图个乐

我平时用的最多的还是代码和文本生成 (周报写文档你懂的),偶尔玩玩文生图,今天主要给大家测一测文心一言4.0模型的代码能力

大模型的代码能力可以拆解的维度很多,我今天主要关注的是代码生成质量和可用性需求理解能力和记忆能力 2个方面。


第一关:代码质量和可用性——写个可运行的游戏代码

废话不多说,我们先看看 代码的生成质量和可用性——写一个五子棋吧

我去测试AI的代码能力的use case是——我会让AI写个小游戏, 底层逻辑是AI需要理解游戏的规则,并且转译成代码
,还必须是可运行的代码,这可能是程序员视角下的“多模态”能力吧,哈哈。

所以我让文心一言4.0模型帮我写一个能跑起来的【五子棋】游戏代码 ,我们看看生成的代码质量(对话截图参考下方)

![](https://img-
blog.csdnimg.cn/direct/d2b00777a88749b88a7b1df519956f97.png)![](https://img-
blog.csdnimg.cn/direct/b7a31ed6cc4d4c1fa64210bc62dbd621.png)

那么关键来了,是否可以运行呢?

我们直接copy下来在开发环境中运行,运行起来没问题 ,定义好了2个棋手交替下棋,一方到5个棋子后游戏判定结束,可以看下方视频截屏。

五子棋

第一关,代码质量和可用性,文心一言4.0模型测试通过~


第二关:需求理解和记忆能力——多轮对话下的任务能力

下面我们看文心一言4.0模型的需求理解能力和记忆能力,测试开启:

很多时候我们在AI代码生成上不是一问一答就结束了 ,最常见的情况反而是——要求AI不断调整生成的代码,这对AI的记忆和需求理解能力提出要求
,下面我会模拟这个情景:

我们看看4.0模型能不能帮我写一个【机器学习代码】,简单来说是对【单层感知机】做一个正负向分类的训练,prompt+回复截图参考下方截图:

![](https://img-
blog.csdnimg.cn/direct/c9deed3c82ad4634b43ea8c26e90549f.png)![](https://img-
blog.csdnimg.cn/direct/de06a9bfa95e493daa12da3b69fc63f2.png)

我向大模型提问有没有更好的方式实现我的诉求,这考验4.0模型是否真的理解我在做什么,以及对机器学习的了解 ,我们接着往下看:

文心一言提出了有神经网络和支持向量机2种方法,给出的说明说明很具体很有信息量,说明对我的需求理解程度是在线的,以及展示了对复杂机器学习算法问题的解决能力。

那我们下面让4.0模型直接按照【支持向量机】再帮我写一个新的代码呢?4.0模型还会记得住我们在讨论什么吗?

代码基本可用 ,因为数据集太小,还专门提示我没必要拆分训练集和测试集(大数据集下通常会做拆分),算是比较贴心了。

所以第二关,需求理解和记忆能力,4.0模型通过!


总结

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值