2024年,大模型市场竞争异常激烈,各厂商纷纷推出新模型并调整价格策略。本文将模型分为几类进行盘点,并推荐实用模型。
1. 免费模型
-
GLM-4-FLASH(智谱):比较有名的免费模型,128K上下文,适合快速处理简单问题。
-
GLM-4V-FLASH(智谱):免费视觉模型,基础任务表现良好。
-
hunyuan-lite(腾讯混元):256K上下文,MOE架构,适合大文件摸底。
-
ernie-speed-128k(百度):基础免费模型。
-
Spark Lite(讯飞星火):免费模型,适合基础任务。
2. 高性价比模型
-
deepseek-chat:V3版本性能甚至比肩claude3.5 sonnet,价格仅1元/百万tokens。行业价格战的开启者。
-
GLM-4-AIR(智谱):128K上下文,最早响应价格战的模型,年底最后一天价格调至价格降至0.5元/百万tokens。
-
qwen-plus(通义千问):即Qwen2.5 72B,价格便宜,综合性能强。
-
doubao-pro-32k:最早响应价格战的一款模型,32K上下文,多次迭代后性能提升。
-
abab6.5s(MiniMax):综合能力强,价格实惠。
-
ernie-3.5-128k(百度)
-
yi-lightning(零一万物)
-
baichuan4-air(百川智能):性价比高。
-
gpt4o-mini、gemini-flash-1.5:国外高性价比模型,性价比略逊于国产头部模型。
3. 视觉模型
-
GLM-4V-PLUS(智谱**)**:旗舰视觉模型,支持视频识别,性能对标5月份GPT4o,价格10元/百万tokens。国内最早的高质量视觉模型之一,然而现在竞争激烈,不如刚开始独树一帜。
-
GLM-4V-FLASH(智谱**)**:免费视觉模型,基础任务表现良好,拥有不俗的生产力。
-
doubao-vision-pro-32k:新的性价比王者,输入3元/百万tokens,输出9元/百万tokens,推荐使用。
-
qwen-vl-max(通义千问):旗舰视觉模型,基于qwen2-vl开发,原20元/百万tokens,年底最后一天降价,输入3元/百万tokens,输出9元/百万tokens。
-
abab6.5s、abab7(MiniMax):原生支持识图。abab6.5s的识图成本低,但是下有免费模型,上有众多模型,没有特别的优势区间。
-
**hunyuan-vision(腾讯混元)、yi-vision(零一万物):**为国产视觉模型。
-
**gpt4o、claude3.5 sonnet、gemini 1.5 pro:**国外模型基本都支持识图,在复杂识图场景仍具优势。
4. 文档交互模型
-
hunyuan-lite:256K上下文,免费,适合大文件摸底。先通过免费模型了解文档大致情况以及文档的token数量,再进一步使用其他模型。
-
qwen-plus:128K的上下文,优秀的综合性能,并且具备缓存命中功能,缓存命中时输入价格降低40%。
-
deepseek:V3版本性能还更优于qwen-plus。最早实现缓存功能的国产模型,缓存命中后成本降低10倍,使得文件交互极其便宜,唯一不足是最大上下文64K。
-
abab6.5s:245K上下文很长,价格便宜,读文档综合性能优异。复杂推理不如qwen-plus和deepseek。
5. 拟人模型
-
abab6.5s:适用于拟人化对话场景,优秀的指令遵循能力以及极快出token速度,更适合实时语音交互。
-
doubao-pro-32k-character:豆包的角色扮演专精模型,拟人化表现优秀。
6. 推理专注模型
-
o1(OpenAI):率先发布思维链推理模型,行业标杆,价格昂贵。
-
gemini 2.0 flash thinking experimental(谷歌):限时免费。
-
QWQ、QVQ(通义千问):文字和视觉识别版,专注推理应用场景,QVQ在研究生考试题上表现优异。价格实惠。
-
GLM-Zero-Preview(智谱):10元/百万tokens,2024年最后一天发布。
7、推荐模型与总结
-
qwen-plus:高性价比,综合性能强,六边形战士。
-
deepseek-chat:目前的V3版本可能是国内性价比最高的模型。
-
abab6.5s:综合能力强,价格实惠,出token速度快,拟人表现优秀,适合AI智能硬件。
-
doubao-vision-pro-32k:视觉模型黑马,性价比高。
-
GLM-4V-FLASH:全球首个官方免费视觉模型,基础任务如识图,文字识别,格式化输出表现良好,具有生产力。
-
hunyuan-lite:256K MOE免费模型,适合大文件摸底以及简单任务。
-
GPT4o:依然是行业标杆,优秀的综合能力,支持多模态,支持16K最大输出。
-
Claude3.5 Sonnet:被认为是目前大模型能力天花板,在代码及编程场景甚至不输o1。
大模型更新迅速,日新月异,本文仅为2024年底的盘点,未来可能发生变化。希望本文能为大模型的技术和应用提供一些参考。
现在大家可以在高通智匠(MindCraft AI)的客户端/小程序上体验以上所有模型,也可以在开发者平台上调用API,官方同价。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。