大模型怎么做好角色扮演?最大的真实数据集、SoTA开源模型、最深入的评估在这里

大模型怎么做好角色扮演?最大的真实数据集、SoTA开源模型、最深入的评估在这里

王鑫涛,复旦大学博士生,师从肖仰华、汪卫教授,致力于探索用AI创造具有人格的数字生命。研究方向聚焦大语言模型与Agent技术,在AI角色扮演领域发表多篇ACL/EMNLP论文,以及该领域首篇研究综述,总计引用量三百余次。他的研究寻求AI技术与人类情感需求的结合。科研之外,他是一位二次元爱好者、业余Coser。该研究完成于他在阶跃星辰实习期间,指导者为王亨老师。

img

  • 论文标题:CoSER: Coordinating LLM-Based Persona Simulation of Established Roles
  • 论文链接:https://arxiv.org/abs/2502.09082

角色扮演 AI(Role-Playing Language Agents,RPLAs)作为大语言模型(LLM)的重要应用,近年来获得了广泛关注。无论是用于情感陪伴、故事创作、游戏中的 AI 角色,还是真人的数字分身,都需要模型能够准确捕捉和模拟特定角色的设定、个性和行为模式。特别是当扮演小说、动漫中的知名角色时,模型需要获取并利用关于这些角色的大量知识。然而,现有的角色扮演 AI 面临两大核心挑战:缺乏高质量的真实角色数据集,以及缺少有效的评估方法。

为解决这些问题,复旦大学和阶跃星辰合作发表了一篇工作,CoSER(Coordinating LLM-Based Persona Simulation of Established Roles),一个包含当下最大的真实数据集、SoTA 开源模型和最深入的评估方法的完整框架,用于高效构建和评估角色扮演 AI。本文的代码、数据集和模型已在 Github 和 Huggingface 上开源,用于促进角色扮演 AI 在研究和应用中的发展。

  • CoSER 8B: https://huggingface.co/Neph0s/CoSER-Llama-3.1-8B
  • CoSER 70B: https://huggingface.co/Neph0s/CoSER-Llama-3.1-70B
  • CoSER Dataset: https://huggingface.co/datasets/Neph0s/CoSER
  • CoSER Code: https://github.com/Neph0s/COSER
  • See and Chat with Your Favorite Book Characters: https://ch.rhineai.com/characters

CoSER Dataset

最大、最真实、最丰富的角色扮演数据

img

从世界最知名的 771 本书中,本文构建了 CoSER Dataset,迄今为止最大、最真实、最丰富的角色扮演数据集,包含:

  • 来自 771 本知名文学作品的 17,966 个角色
  • 29,798 段书中的真实对话,而非由大模型生成
  • 全面的数据类型:角色概述、对话(包含详细的上下文情景)、关键剧情的摘要和角色经历和等
  • 语言、动作和想法:除了语言的对白,对话中还包括角色的动作和想法。

img

上图将 CoSER Dataset 与之前的数据集进行了比较。概括来说,CoSER 的独特之处在于:

**1. 真实性:**不同于此前数据集中大量使用的 LLM 生成的角色问答对,CoSER 数据集从经典文学作品中提取真实角色对话,在忠实刻画角色的同时,保留了真实对话的复杂性,是天然的多轮、多角色的优质对话数据。

**2. 全面性:**CoSER 数据集不仅包含角色概述和对话,还包括剧情摘要、角色经历和对话背景等丰富内容。详细的对话背景在角色扮演的训练和评估中非常重要,而剧情摘要、角色经历提供了更丰富的角色知识。

**3. 多维表达:**对话内容涵盖语言(speech)、动作(action)和想法(thought)三个维度,使角色表现更为立体。其中,想法数据能帮助模型在训练中更好地理解角色的行为和语言。

**4. 环境作为特殊角色:**将环境视为特殊角色,扩展了角色对话能表达的信息,使对话数据可以表示书中的环境反馈、大众角色反应等信息。

Given-Circumstance Acting

角色扮演的训练与评估方法

img

本文引入了**给定情境表演(Given-Circumstance Acting,GCA)**方法用于训练和评估 LLM 的角色扮演能力,这一方法受到了《演员的自我修养》的作者 - 斯坦尼斯拉夫斯基 - 的表演理论的启发。

在训练阶段,给定一段对话及其上下文情景,本文让模型每次扮演对话中的一个角色,并在相应的台词上进行训练。基于这一方法,本文训练了 CoSER 8B 和 CoSER 70B 两个模型,它们基于 LLaMA-3.1 构建,展现了真实、生动的角色表现能力,并在多项角色扮演评估上取得 SoTA 成绩。

在评估阶段,GCA 评估由两个步骤组成:

**1. 多智能体模拟(Multi-agent Simulation):**构建一个多智能体系统,让被评估模型依次扮演不同角色,在给定情境下进行模拟,获得一段由多个角色 AI 交互生成的对话。

**2. 基于惩罚的 LLM 评判(Penalty-based LLM Juding):**让 LLM 扮演评判者,使用详细评分标准(rubrics)和原始对话作为参考,按照 “采点扣分制” 识别明确的表演缺陷来评估模拟对话的质量。下图展示了 “人物忠实度” 维度的扣分标准:

img

本文将评估维度按照 1. 关注自身质量 or 关注忠于原作;2. 关注单一角色 or 关注整体模拟,分成了以下四个维度。

img

GCA 评估方法的优势在于:1. 通过多智能体模拟,全面反映模型的多轮、多角色的扮演能力;2. 基于原著中的真实对话作为 Groundtruth,并提供专家级评分标准指导 LLM 评判者。

关键实验与结论

img

在本文提出的 GCA 评估中,CoSER-70B、GPT-4o、Step-2、Doubao-pro 取得了最好的表现,其中,CoSER-70B 的表现远超其他开源模型。进一步,本文在实验中还汇报了 BLEU、ROUGE-L 等指标来比较模型生成对话与 Groundtruth 对话的一致性,在这一指标上 CoSER-70B 超过了所有的现有模型。

img

在 InCharacter、LifeChoice 等基于分类和多选题的角色扮演基准测试上,CoSER 模型也取得了优秀的表现。其中,CoSER-70B 在 InCharacter 和 LifeChoice 基准测试上分别达到了 75.80% 和 93.47% 的准确率,超越或匹配 GPT-4o。

在论文中,作者还进行了其他实验,证明了想法数据在训练 / 推理阶段的重要性、将 CoSER 数据用于检索增强(RAG)的有效性等结论,感兴趣的读者可以在论文原文中找到相应的实验。

Case Study

最后,下图列出了 CoSER 测试集中的一个例子(出自《权力的游戏》),包括其中的对话场景、Groundtruth 对话及 CoSER-70B 生成的结果。在这个例子中,我们看到,CoSER-70B 不仅将角色的背景、性格模仿得活灵活现,还用上了原作的角色的经典台词(不在数据中出现),体现了 CoSER 模型在扮演小说角色时的优秀表现。

img

img

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值