SwanLab快速上手(Wandb国产平替)

1. SwanLab介绍

swanlab地址:swanlab.cn
Github地址:github.com/SwanHubX/Sw…

SwanLab是一款开源、轻量级的AI实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台,旨在加速AI研发团队100倍的研发效率。其提供了友好的API和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享、实时消息通知等功能,让您可以快速跟踪ML实验、可视化过程、分享给同伴。

在这里插入图片描述

相比于Tensorboard,SwanLab记录的信息更全、使用更方便。相比于Wandb,则访问速度更快,更方便于在国内使用,与主创团队交流更容易。

核心特性列表:

  1. 📊实验指标与超参数跟踪: 极简的代码嵌入您的机器学习pipeline,跟踪记录训练关键指标
    • 自由的超参数与实验配置记录
    • 支持的元数据类型:标量指标、图像、音频、文本、…
    • 支持的图表类型:折线图、媒体图(图像、音频、文本)、…
    • 自动记录:控制台logging、GPU硬件、Git信息、Python解释器、Python库列表、代码目录
  2. ⚡️全面的框架集成: PyTorch、Tensorflow、PyTorch Lightning、🤗HuggingFace Transformers、MMEngine、OpenAI、ZhipuAI、Hydra、…
  3. 📦组织实验: 集中式仪表板,快速管理多个项目与实验,通过整体视图速览训练全局
  4. 🆚比较结果: 通过在线表格与对比图表比较不同实验的超参数和结果,挖掘迭代灵感
  5. 👥在线协作: 您可以与团队进行协作式训练,支持将实验实时同步在一个项目下,您可以在线查看团队的训练记录,基于结果发表看法与建议
  6. ✉️分享结果: 复制和发送持久的URL来共享每个实验,方便地发送给伙伴,或嵌入到在线笔记中
  7. 💻支持自托管: 支持不联网使用,自托管的社区版同样可以查看仪表盘与管理实验

上图:

多个实验指标对比: 多个实验对比 管理多个项目: 项目管理 记录超参数和指标: 超参数与指标记录 表格管理实验: 实验表格 查看训练的日志:

在这里插入图片描述

2. 快速上手

参考链接:SwanLab快速开始

2.1 安装swanlab

bash

复制代码pip install swanlab

如果下载太慢,可以使用以下命令从清华源下载:

bash

复制代码pip install swanlab -i https://pypi.tuna.tsinghua.edu.cn/simple

2.2 登录账号

如果你之前没有注册用SwanLab账号,那么去官网注册一个,然后记一下你的API Key: 在这里插入图片描述 在命令行输入:

bash

复制代码swanlab login

然后将你的API Key粘贴进去,按回车,然后就登录完成了(后面无需再次登录)。

2.3 运行案例程序

python复制代码import swanlab
import random

# 初始化一个新的swanlab run类来跟踪这个脚本
swanlab.init(
  # 设置将记录此次运行的项目信息
  project="my-awesome-project",
  
  # 跟踪超参数和运行元数据
  config={
    "learning_rate": 0.02,
    "architecture": "CNN",
    "dataset": "CIFAR-100",
    "epochs": 10
  }
)

# 模拟训练
epochs = 10
offset = random.random() / 5
for epoch in range(2, epochs):
  acc = 1 - 2 ** -epoch - random.random() / epoch - offset
  loss = 2 ** -epoch + random.random() / epoch + offset

  # 向swanlab上传训练指标
  swanlab.log({"acc": acc, "loss": loss})

运行后,你会在最开始看到swanlab链接: 在这里插入图片描述 点击链接就可以看到可视化效果,或者访问SwanLab官网,会在你的账号下看到新的实验。

在这里插入图片描述

3. 训练一个MNIST手写体识别

python复制代码import os
import torch
from torch import nn, optim, utils
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
import swanlab

# CNN网络构建
class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        # 1,28x28
        self.conv1 = nn.Conv2d(1, 10, 5)  # 10, 24x24
        self.conv2 = nn.Conv2d(10, 20, 3)  # 128, 10x10
        self.fc1 = nn.Linear(20 * 10 * 10, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        in_size = x.size(0)
        out = self.conv1(x)  # 24
        out = F.relu(out)
        out = F.max_pool2d(out, 2, 2)  # 12
        out = self.conv2(out)  # 10
        out = F.relu(out)
        out = out.view(in_size, -1)
        out = self.fc1(out)
        out = F.relu(out)
        out = self.fc2(out)
        out = F.log_softmax(out, dim=1)
        return out


# 捕获并可视化前20张图像
def log_images(loader, num_images=16):
    images_logged = 0
    logged_images = []
    for images, labels in loader:
        # images: batch of images, labels: batch of labels
        for i in range(images.shape[0]):
            if images_logged < num_images:
                # 使用swanlab.Image将图像转换为wandb可视化格式
                logged_images.append(swanlab.Image(images[i], caption=f"Label: {labels[i]}"))
                images_logged += 1
            else:
                break
        if images_logged >= num_images:
            break
    swanlab.log({"MNIST-Preview": logged_images})


if __name__ == "__main__":

    # 初始化swanlab
    run = swanlab.init(
        project="MNIST-example",
        experiment_name="ConvNet",
        description="Train ConvNet on MNIST dataset.",
        config={
            "model": "CNN",
            "optim": "Adam",
            "lr": 0.001,
            "batch_size": 512,
            "num_epochs": 10,
            "train_dataset_num": 55000,
            "val_dataset_num": 5000,
        },
    )

    # 设置训练机、验证集和测试集
    dataset = MNIST(os.getcwd(), train=True, download=True, transform=ToTensor())
    train_dataset, val_dataset = utils.data.random_split(
        dataset, [run.config.train_dataset_num, run.config.val_dataset_num]
    )

    train_loader = utils.data.DataLoader(train_dataset, batch_size=run.config.batch_size, shuffle=True)
    val_loader = utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False)

    # 初始化模型、损失函数和优化器
    model = ConvNet()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=run.config.lr)

    # (可选)看一下数据集的前16张图像
    log_images(train_loader, 16)

    # 开始训练
    for epoch in range(1, run.config.num_epochs):
        swanlab.log({"train/epoch": epoch})
        # 训练循环
        for iter, batch in enumerate(train_loader):
            x, y = batch
            optimizer.zero_grad()
            output = model(x)
            loss = criterion(output, y)
            loss.backward()
            optimizer.step()

            print(
                f"Epoch [{epoch}/{run.config.num_epochs}], Iteration [{iter + 1}/{len(train_loader)}], Loss: {loss.item()}"
            )

            if iter % 20 == 0:
                swanlab.log({"train/loss": loss.item()}, step=(epoch - 1) * len(train_loader) + iter)

        # 每4个epoch验证一次
        if epoch % 2 == 0:
            model.eval()
            correct = 0
            total = 0
            with torch.no_grad():
                for batch in val_loader:
                    x, y = batch
                    output = model(x)
                    _, predicted = torch.max(output, 1)
                    total += y.size(0)
                    correct += (predicted == y).sum().item()

            accuracy = correct / total
            swanlab.log({"val/accuracy": accuracy})

效果: 在这里插入图片描述

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值