GLM4大模型微调入门实战-命名实体识别(NER)任务

GLM4是清华智谱团队最近开源的大语言模型。

以GLM4作为基座大模型,通过指令微调的方式做高精度的命名实体识别(NER),是学习入门LLM微调、建立大模型认知的非常好的任务。

在这里插入图片描述

显存要求相对较高,需要40GB左右。

在本文中,我们会使用 GLM4-9b-Chat 模型在 中文NER 数据集上做指令微调训练,同时使用SwanLab监控训练过程、评估模型效果。

知识点1:什么是指令微调?

大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。

指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。

在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的NLP任务。所以这类任务的应用场景覆盖了以往NLP模型的场景,甚至很多团队拿它来标注互联网数据

知识点2:什么是命名实体识别?

命名实体识别 (NER) 是一种NLP技术,主要用于识别和分类文本中提到的重要信息(关键词)。这些实体可以是人名、地名、机构名、日期、时间、货币值等等。 NER 的目标是将文本中的非结构化信息转换为结构化信息,以便计算机能够更容易地理解和处理。

在这里插入图片描述

NER 也是一项非常实用的技术,包括在互联网数据标注、搜索引擎、推荐系统、知识图谱、医疗保健等诸多领域有广泛应用。

1.环境安装

本案例基于Python>=3.8,请在您的计算机上安装好Python,并且有一张英伟达显卡(显存要求并不高,大概10GB左右就可以跑)。

我们需要安装以下这几个Python库,在这之前,请确保你的环境内已安装好了pytorch以及CUDA

txt代码解读复制代码swanlab
modelscope
transformers
datasets
peft
accelerate
pandas
tiktoken

一键安装命令:

bash

代码解读
复制代码pip install swanlab modelscope transformers datasets peft pandas accelerate tiktoken

本案例测试于modelscope1.14.0、transformers4.41.2、datasets2.18.0、peft0.11.1、accelerate0.30.1、swanlab0.3.11、tiktoken==0.7.0

2.准备数据集

本案例使用的是HuggingFace上的chinese_ner_sft数据集,该数据集主要被用于训练命名实体识别模型。

在这里插入图片描述

chinese_ner_sft由不同来源、不同类型的几十万条数据组成,应该是我见过收录最齐全的中文NER数据集。

这次训练我们不需要用到它的全部数据,只取其中的CCFBDCI数据集(中文命名实体识别算法鲁棒性评测数据集)进行训练,该数据集包含LOC(地点)、GPE(地理)、ORG(组织)和PER(人名)四种实体类型标注,每条数据的例子如下:

json代码解读复制代码{
  "text": "今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。",
  "entities": [
    {
        "start_idx": 23,
        "end_idx": 25,
        "entity_text": "中国",
        "entity_label": "GPE",
        "entity_names": ["地缘政治实体", "政治实体", "地理实体", "社会实体"]},
        {
            "start_idx": 25,
            "end_idx": 28,
            "entity_text": "外交部",
            "entity_label": "ORG",
            "entity_names": ["组织", "团体", "机构"]
        },
        {
            "start_idx": 30,
            "end_idx": 33,
            "entity_text": "唐家璇",
            "entity_label": "PER",
            "entity_names": ["人名", "姓名"]
        }, 
        ...
    ],
"data_source": "CCFBDCI"
}

其中text是输入的文本,entities是文本抽取出的实体。我们的目标是希望微调后的大模型能够根据由text组成的提示词,预测出一个json格式的实体信息:

txt代码解读复制代码输入:今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。

大模型输出:{"entity_text":"中国", "entity_label":"组织"}{"entity_text":"唐家璇", "entity_label":"人名"}...

现在我们将数据集下载到本地目录。下载方式是前往chinese_ner_sft - huggingface下载ccfbdci.jsonl到项目根目录下即可:

在这里插入图片描述

3. 加载模型

这里我们使用modelscope下载GLM4-9b-Chat模型(modelscope在国内,所以直接用下面的代码自动下载即可,不用担心速度和稳定性问题),然后把它加载到Transformers中进行训练:

python代码解读复制代码from modelscope import snapshot_download, AutoTokenizer
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import torch

model_id = "ZhipuAI/glm-4-9b-chat"    
model_dir = "./ZhipuAI/glm-4-9b-chat/"

# 在modelscope上下载GLM4模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")

# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

4. 配置LoRA

python代码解读复制代码from peft import LoraConfig, TaskType, get_peft_model

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["query_key_value", "dense", "dense_h_to_4h", "activation_func", "dense_4h_to_h"],
    inference_mode=False,  # 训练模式
    r=8,  # Lora 秩
    lora_alpha=32,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1,  # Dropout 比例
)

model = get_peft_model(model, config)

5. 配置训练可视化工具

我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。

这里直接使用SwanLab和Transformers的集成来实现:

python代码解读复制代码from swanlab.integration.huggingface import SwanLabCallback

swanlab_callback = SwanLabCallback(...)

trainer = Trainer(
    ...
    callbacks=[swanlab_callback],
)

如果你是第一次使用SwanLab,那么还需要去swanlab.cn上注册一个账号,在用户设置页面复制你的API Key,然后在训练开始时粘贴进去即可:

在这里插入图片描述

6. 完整代码

开始训练时的目录结构:

txt代码解读复制代码|--- train.py
|--- ccfbdci.jsonl

train.py:

python代码解读复制代码import json
import pandas as pd
import torch
from datasets import Dataset
from modelscope import snapshot_download, AutoTokenizer
from swanlab.integration.huggingface import SwanLabCallback
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import os
import swanlab


def dataset_jsonl_transfer(origin_path, new_path):
    """
    将原始数据集转换为大模型微调所需数据格式的新数据集
    """
    messages = []

    # 读取旧的JSONL文件
    with open(origin_path, "r") as file:
        for line in file:
            # 解析每一行的json数据
            data = json.loads(line)
            input_text = data["text"]
            entities = data["entities"]
            match_names = ["地点", "人名", "地理实体", "组织"]
            
            entity_sentence = ""
            for entity in entities:
                entity_json = dict(entity)
                entity_text = entity_json["entity_text"]
                entity_names = entity_json["entity_names"]
                for name in entity_names:
                    if name in match_names:
                        entity_label = name
                        break
                
                entity_sentence += f"""{{"entity_text": "{entity_text}", "entity_label": "{entity_label}"}}"""
            
            if entity_sentence == "":
                entity_sentence = "没有找到任何实体"
            
            message = {
                "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """,
                "input": f"文本:{input_text}",
                "output": entity_sentence,
            }
            
            messages.append(message)

    # 保存重构后的JSONL文件
    with open(new_path, "w", encoding="utf-8") as file:
        for message in messages:
            file.write(json.dumps(message, ensure_ascii=False) + "\n")
            
            
def process_func(example):
    """
    对数据集进行数据预处理,主要用于被dataset.map调用
    """

    MAX_LENGTH = 384 
    input_ids, attention_mask, labels = [], [], []
    system_prompt = """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体"."""
    
    instruction = tokenizer(
        f"<|system|>\n{system_prompt}<|endoftext|>\n<|user|>\n{example['input']}<|endoftext|>\n<|assistant|>\n",
        add_special_tokens=False,
    )
    response = tokenizer(f"{example['output']}", add_special_tokens=False)
    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
    attention_mask = (
        instruction["attention_mask"] + response["attention_mask"] + [1]
    )
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}   


def predict(messages, model, tokenizer):
    """对测试集进行模型推理,得到预测结果"""
    device = "cuda"
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(
        model_inputs.input_ids,
        max_new_tokens=512
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    
    print(response)
     
    return response


model_id = "ZhipuAI/glm-4-9b-chat"    
model_dir = "./ZhipuAI/glm-4-9b-chat/"

# 在modelscope上下载GLM4模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")

# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

# 加载、处理数据集和测试集
train_dataset_path = "ccfbdci.jsonl"
train_jsonl_new_path = "ccf_train.jsonl"

if not os.path.exists(train_jsonl_new_path):
    dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path)

# 得到训练集
total_df = pd.read_json(train_jsonl_new_path, lines=True)
train_df = total_df[int(len(total_df) * 0.1):]
train_ds = Dataset.from_pandas(train_df)
train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names)

# 配置LoRA
config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["query_key_value", "dense", "dense_h_to_4h", "activation_func", "dense_4h_to_h"],
    inference_mode=False,  # 训练模式
    r=8,  # Lora 秩
    lora_alpha=32,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1,  # Dropout 比例
)

# 得到被peft包装后的模型
model = get_peft_model(model, config)

# 配置Transformers训练参数
args = TrainingArguments(
    output_dir="./output/GLM4-NER",
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    gradient_accumulation_steps=4,
    logging_steps=10,
    num_train_epochs=2,
    save_steps=100,
    learning_rate=1e-4,
    save_on_each_node=True,
    gradient_checkpointing=True,
    report_to="none",
)

# 设置SwanLab与Transformers的回调
swanlab_callback = SwanLabCallback(
    project="GLM4-NER-fintune",
    experiment_name="GLM4-9B-Chat",
    description="使用智谱GLM4-9B-Chat模型在NER数据集上微调,实现关键实体识别任务。",
    config={
        "model": model_id,
        "model_dir": model_dir,
        "dataset": "qgyd2021/chinese_ner_sft",
    },
)

# 设置Transformers Trainer
trainer = Trainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
    callbacks=[swanlab_callback],
)

# 开始训练
trainer.train()

# 用随机20条数据测试模型
test_df = total_df[:int(len(total_df) * 0.1)].sample(n=20)

test_text_list = []
for index, row in test_df.iterrows():
    instruction = row['instruction']
    input_value = row['input']
    
    messages = [
        {"role": "system", "content": f"{instruction}"},
        {"role": "user", "content": f"{input_value}"}
    ]

    response = predict(messages, model, tokenizer)
    messages.append({"role": "assistant", "content": f"{response}"})
    result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}"
    test_text_list.append(swanlab.Text(result_text, caption=response))

# 记录测试结果
swanlab.log({"Prediction": test_text_list})
# 关闭SwanLab记录
swanlab.finish()

看到下面的进度条即代表训练开始:

在这里插入图片描述

7.训练结果演示

在SwanLab上查看最终的训练结果:

可以看到在2个epoch之后,微调后的GLM4的loss降低到了不错的水平——当然对于大模型来说,真正的效果评估还得看主观效果。

在这里插入图片描述

可以看到在一些测试样例上,微调后的GLM4能够给出准确的NER结果:

在这里插入图片描述

至此,你已经完成了qwen2指令微调的训练!

8.推理训练好的模型

训好的模型默认被保存在./output/GLM4-NER文件夹下。 推理模型的代码如下:

python代码解读复制代码import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

def predict(messages, model, tokenizer):
    device = "cuda"

    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
    generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return response

model_dir = "./ZhipuAI/glm-4-9b-chat/"
lora_dir = "./output/GLM4-NER/checkpoint-1700"

# 加载原下载路径的tokenizer和model
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16)

# 加载训练好的Lora模型
model = PeftModel.from_pretrained(model, model_id=lora_dir)

input_text = "西安电子科技大学的陈志明爱上了隔壁西北工业大学苏春红,他们约定好毕业后去中国的苏州定居。"
test_texts = {
    "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如; {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """,
    "input": f"文本:{input_text}"
}

instruction = test_texts['instruction']
input_value = test_texts['input']

messages = [
    {"role": "system", "content": f"{instruction}"},
    {"role": "user", "content": f"{input_value}"}
]

response = predict(messages, model, tokenizer)
print(response)

输出结果为:

json代码解读复制代码{"entity_text": "西安电子科技大学", "entity_label": "组织"}
{"entity_text": "陈志明", "entity_label": "人名"}
{"entity_text": "西北工业大学", "entity_label": "组织"}
{"entity_text": "苏春红", "entity_label": "人名"}
{"entity_text": "中国", "entity_label": "地理实体"}
{"entity_text": "苏州", "entity_label": "地理实体"}

相关链接

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的zi yuan得到学习提升
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些P DF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习zhi nan已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

  • 27
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GLM-4V是一种大型模型,它的全称是Generalized Linear Model-4V。GLM-4V是一种广义线性模型,它是基于广义线性模型(Generalized Linear Model, GLM)的扩展和改进。 GLM-4V的原理如下: 1. 广义线性模型GLM):GLM是一种统计模型,用于建立因变量与自变量之间的关系。它通过将线性回归模型与非线性函数相结合,可以处理不满足正态分布假设的数据。GLM的基本假设是,因变量的分布可以通过一个链接函数与自变量的线性组合相关联。 2. 四个"V":GLM-4V中的四个"V"代表了四个重要的概念,分别是Variation、Variance、Value和Validation。 - Variation(变异性):GLM-4V关注因变量的变异性,通过分析因变量的变异程度来确定模型的拟合程度。 - Variance(方差):GLM-4V考虑了因变量的方差,通过对方差进行建模,可以更好地描述因变量的分布特征。 - Value(价值):GLM-4V关注因变量的价值,通过对因变量的价值进行建模,可以更好地理解因变量对自变量的响应。 - Validation(验证):GLM-4V通过验证模型的拟合程度和预测能力,来评估模型的有效性和可靠性。 3. 模型构建:GLM-4V的模型构建包括以下几个步骤: - 数据准备:包括数据清洗、变量选择和数据转换等。 - 模型选择:选择适当的链接函数和误差分布族,并确定自变量的形式。 - 参数估计:使用最大似然估计或广义最小二乘法等方法,估计模型的参数。 - 模型诊断:对模型进行诊断,检验模型的拟合程度和假设条件是否满足。 - 模型评估:通过交叉验证等方法,评估模型的预测能力和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值