随着深度学习技术的不断发展,大模型在各种任务中取得了显著的成果。然而,大模型的训练需要大量的数据和算力,导致在实际应用中受到限制。为了解决这个问题,研究者们提出了微调的方法,即使用预训练模型在少量数据上进行训练,使其适应特定的任务。
在Prompt Tuning之前,Finetuning是常用的微调方法。Finetuning是通过使用大模型进行下游任务重训的方法,但由于大模型参数量过大,Finetuning需要大量的数据和更多的算力去更新学习参数,不够实用。
在Prompt思想的启发下,Prefix-Tuning提出了给每一个input输入增加一个连续的任务相关的embedding向量来进行训练。这里的连续是相对于人工定义的文本prompt token的离散来说的。例如一个人工定义的prompt token数组是[‘The’, ‘movie’, ‘is’, ‘[MASK]’],把其中的token替换成一个embedding向量做为输入的话,其中embedding就是连续的表达方式。
具体来说,Prefix Tuning在输入token前构造一段任务相关的virtual tokens作为prefix,训练时只更新Prefix不分的参数,而Transformer的其他不分参数固定,和构造prompt类似,只是prompt是人为构造的即无法在模型训练时更新参数,而Prefix可以学习<隐式>的prompt。
另外,还有Adapter Tuning和P-tuning等方法。Adapter Tuning是固定原预训练模型的参数,只对新增的adapter进行微调。P-tuning将prompt转为可学习的embedding层,v2则加入了prompts tokens作为输入。这些方法可以在推理时直接用训练好的AB两个矩阵和原预训练模型的参数相加,相加结果替换原预训练模型参数。
在实际应用中,Prompt Tuning具有以下优点:
- 高效性:通过只更新部分参数,降低了计算量和参数量,加速了训练过程。
- 实用性:仅需少量数据即可进行有效的微调,降低了对大量标注数据的依赖。
- 灵活性:可以针对不同的任务定制不同的Prompt,具有较强的任务适应性。
为了实现Prompt Tuning,我们需要进行以下步骤: - 定义任务相关embedding向量:根据任务需求定义连续的任务相关embedding向量。这些向量可以是手动设计的,也可以通过其他方式自动学习得到。
- 修改输入前缀:在输入数据前添加定义好的embedding向量作为前缀。这些前缀将与原始输入一起传递给模型进行训练。
- 微调模型:使用带有前缀的输入数据进行微调。在这个过程中,只有前缀部分的参数会被更新,而原始预训练模型的参数保持不变。
- 评估和优化:在验证集上评估模型的性能并进行优化调整。通过不断迭代和优化,我们可以得到适用于特定任务的微调模型。
总结来说,Prompt Tuning是一种高效、实用的模型微调方法。通过在输入前添加连续的任务相关embedding向量进行训练,可以降低计算量和参数量,加速训练过程。同时,仅需少量数据即可进行有效的微调,降低了对大量标注数据的依赖。此外,可以针对不同的任务定制不同的Prompt,具有较强的任务适应性。在实际应用中,Prompt Tuning可以帮助我们快速适应各种任务需求,提高模型的性能表现。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
资源分享
大模型AGI学习包
资料目录
- 成长路线图&学习规划
- 配套视频教程
- 实战LLM
- 人工智能比赛资料
- AI人工智能必读书单
- 面试题合集
《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!
1.成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
2.视频教程
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩。
3.LLM
大家最喜欢也是最关心的LLM(大语言模型)
《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!