数据集概述
数据集描述
本数据集包含在游戏环境中拍摄的图像,旨在用于训练和评估目标检测模型。数据集中共有2000张图片,每张图片的分辨率为640x640像素,大小约为60-80KB。数据集提供了两种格式的数据标注:VOC格式和YOLO格式。
数据集格式
VOC格式:包含XML文件,用于详细描述每个图像中的对象位置。
YOLO格式:包含TXT文件,用于简洁描述每个图像中的对象位置。
文件结构
数据集压缩包内包含三个文件夹:
JPEGImages:存储原始图像文件,共2000张 `.jpg` 图片。
Annotations:存储与图像对应的XML标注文件,共2000个 `.xml` 文件。
labels:存储与图像对应的TXT标注文件,共2000个 `.txt` 文件。
标签信息
标签种类数:8种
标签名称:["NPC", "boss", "elite", "gate", "hero", "monster", "overflow", "service"]
每个标签的框数:
- NPC 框数 = 2010
- boss 框数 = 1800
- elite 框数 = 4953
- gate 框数 = 4627
- hero 框数 = 1618
- monster 框数 = 3469
- overflow 框数 = 1030
- service 框数 = 1120
总框数:20627
图像信息
图片数量:2000张
图片分辨率:640x640像素
图片大小:约60-80KB
图片是否增强:否
标注信息
标签形状:矩形框,用于目标检测识别
示例文件路径
JPEGImages 文件夹路径:`/path/to/dataset/JPEGImages/`
Annotations 文件夹路径:`/path/to/dataset/Annotations/`
labels 文件夹路径:`/path/to/dataset/labels/`
download文件夹路径:mbd.pub/o/bread/mbd-Z5Wakppu
示例文件名
图像文件:`image_0001.jpg`
XML标注文件:`image_0001.xml`
TXT标注文件:`image_0001.txt`
总结
该数据集包含2000张640x640像素的游戏环境图像,每张图像都有对应的XML和TXT文件进行标注。标签种类共有8种,总共有20627个标注框。数据集未经过增强处理,适合用于训练和评估目标检测模型。