摘要: 随着全球化的深入发展,国际贸易的规模不断扩大,物流行业作为支撑全球贸易的重要基础,面临着效率提升和服务优化的巨大挑战。消费者对物流服务的需求日益多样化、个性化和即时化,这要求物流系统必须具备更高的灵活性和响应速度。大数据、云计算、物联网、人工智能等新兴技术的快速发展为物流行业的转型升级提供了技术支持,使得物流系统更加智能化、自动化成为可能。物流企业面临着来自国内外同行业的激烈竞争,提高物流效率、降低成本、提升服务质量成为企业生存和发展的关键。
基于大数据的智能物流系统的研究内容可以从以下几个方面展开:
1. 物流大数据的采集
研究如何利用传感器、RFID、GPS等技术与设备采集物流过程中的实时数据。研究数据预处理技术,包括数据清洗、数据转换、数据归一化等,以确保数据的质量和可用性。
2. 物流数据存储与管理
研究适合物流大数据存储的数据库技术,如分布式数据库、NoSQL数据库等。研究数据安全管理,包括数据加密、访问控制、灾难恢复等,以保护数据的安全和隐私。
3. 物流数据挖掘与分析
研究数据挖掘技术,如关联规则挖掘、聚类分析、时间序列分析等,以发现物流数据中的模式和趋势。
4.数据可视化
研究数据可视化技术,如动态报表、热力图、物流网络图等,以直观展示物流数据的分析结果。
关键词:物流服务;Flask; Python;数字孪生智能
Research and Implementation of Digital Twin Intelligent Logistics Service System Based on Big Data
Abstract: With the deepening development of globalization and the continuous expansion of international trade, the logistics industry, as an important foundation supporting global trade, is facing enormous challenges in improving efficiency and optimizing services. The demand for logistics services from consumers is becoming increasingly diverse, personalized, and real-time, which requires logistics systems to have higher flexibility and response speed. The rapid development of emerging technologies such as big data, cloud computing, the Internet of Things, and artificial intelligence has provided technical support for the transformation and upgrading of the logistics industry, making logistics systems more intelligent and automated possible. Logistics enterprises are facing fierce competition from their peers both domestically and internationally. Improving logistics efficiency, reducing costs, and improving service quality have become the key to their survival and development.
The research content of intelligent logistics systems based on big data can be carried out from the following aspects:
1. Collection of logistics big data
Research how to use technologies and devices such as sensors, RFID, GPS, etc. to collect real-time data during logistics processes. Research data preprocessing techniques, including data cleaning, data conversion, data normalization, etc., to ensure the quality and availability of data.
2. Logistics data storage and management
Research database technologies suitable for logistics big data storage, such as distributed databases, NoSQL databases, etc. Research data security management, including data encryption, access control, disaster recovery, etc., to protect data security and privacy.
3. Logistics data mining and analysis
Research data mining techniques such as association rule mining, clustering analysis, time series analysis, etc. to discover patterns and trends in logistics data.
4. Data visualization
Research data visualization techniques, such as dynamic reports, heat maps, logistics network diagrams, etc., to visually display the analysis results of logistics data.
Keywords: logistics services; Flask; Python; Digital twin intelligence
1.1课题背景及意义
随着全球化的深入发展,国际贸易的规模不断扩大,物流行业作为支撑全球贸易的重要基础,面临着效率提升和服务优化的巨大挑战。消费者对物流服务的需求日益多样化、个性化和即时化,这要求物流系统必须具备更高的灵活性和响应速度。大数据、云计算、物联网、人工智能等新兴技术的快速发展为物流行业的转型升级提供了技术支持,使得物流系统更加智能化、自动化成为可能。物流企业面临着来自国内外同行业的激烈竞争,提高物流效率、降低成本、提升服务质量成为企业生存和发展的关键。
基于大数据的智能物流系统能够实时收集和分析物流过程中的数据,帮助企业优化资源配置、提高作业效率,减少不必要的浪费。大数据分析能够为物流企业提供准确的决策支持,帮助企业市场趋势、制定合理的物流策略,提升企业的核心竞争力。通过数据挖掘和分析,智能物流系统能够更好地理解客户需求,提供个性化的物流服务,提高客户满意度和忠诚度。基于大数据的智能物流系统的研究和应用,有助于推动物流行业向更高效、更智能的方向发展,促进整个产业链的升级和转型。通过数据驱动的物流管理,能够有效降低物流活动对环境的影响,实现绿色物流和可持续发展。综上所述,基于大数据的智能物流系统研究对于物流行业的转型升级、提升企业竞争力、满足消费者需求以及促进社会经济的可持续发展具有重要的理论和实践意义。
大数据的智能物流系统是指利用大数据技术和人工智能等先进技术,对物流过程中的各个环节进行数据采集、分析和优化,以提高物流效率和降低物流成本的系统。其研究背景主要包括以下几个方面:
物流行业的复杂性:现代物流涉及到众多环节,包括订单处理、运输管理、仓储管理、供应链协调等,每个环节都充满了挑战和难题。传统的物流管理方法已经无法满足日益增长的物流需求,因此需要借助先进技术来提升物流效率。
大数据的出现:随着互联网和物联网技术的发展,物流行业中产生的数据数量呈爆炸式增长。这些数据包含了大量有价值的信息,例如订单信息、运输轨迹、库存数据等。通过对这些数据进行采集、存储和分析,可以揭示潜在的物流问题和优化机会。
人工智能的进步:人工智能技术的快速发展为物流领域提供了强大的工具。机器学习、深度学习和自然语言处理等技术可以帮助物流系统自动化地处理和分析大量数据,从而发现规律、趋势,并做出相应的决策。
对物流效率和成本的追求:随着全球贸易的不断增长,物流效率和成本已成为企业和国家竞争力的重要组成部分。通过利用大数据和人工智能技术,可以实现物流过程的优化,提高货物运输的准确性、时效性和安全性,降低物流成本。
综上所述,大数据的智能物流系统的研究背景主要是源于物流行业的需求和挑战,以及大数据和人工智能技术的快速发展。这一研究方向有望为物流行业带来巨大的改进和发展。
1.2国内外研究现状
智能物流系统是利用大数据技术和人工智能算法来提升物流管理效率和服务质量的一种创新型物流模式。国内外在智能物流领域的研究和应用都取得了一定的进展。
国内研究方面,中国的互联网巨头和物流企业积极探索智能物流系统的应用。他们致力于构建端到端的物流解决方案,通过物联网、大数据分析和智能算法等技术手段,实现货物的实时跟踪、仓储管理的优化、运输路径的智能规划等功能。此外,一些高校和科研机构也加入到智能物流系统的研究中,推动了相关理论和方法的发展。
国外研究方面,欧美等发达国家对智能物流系统的研究也非常活跃。他们注重在物流网络的设计与优化、货物跟踪与监控、配送路径规划、仓储管理等方面开展研究。同时,他们也借鉴了人工智能、物联网、云计算等技术的应用,不断提升智能物流系统的性能和可靠性。
总体来说,国内外对智能物流系统的研究都取得了一定的成果。不同国家和地区在理论研究、技术创新和应用推广等方面存在一定差距,但都在努力推动智能物流系统的发展,以提高物流效率,降低成本,并满足日益增长的物流需求。
1.3研究的主要内容
基于大数据的智能物流系统的研究内容可以从以下几个方面展开:
1. 物流大数据的采集
研究如何利用传感器、RFID、GPS等技术与设备采集物流过程中的实时数据。研究数据预处理技术,包括数据清洗、数据转换、数据归一化等,以确保数据的质量和可用性。
2. 物流数据存储与管理
研究适合物流大数据存储的数据库技术,如分布式数据库、NoSQL数据库等。研究数据安全管理,包括数据加密、访问控制、灾难恢复等,以保护数据的安全和隐私。
3. 物流数据挖掘与分析
研究数据挖掘技术,如关联规则挖掘、聚类分析、时间序列分析等,以发现物流数据中的模式和趋势。
4.数据可视化
研究数据可视化技术,如动态报表、热力图、物流网络图等,以直观展示物流数据的分析结果。
2.1功能需求分析
智能物流服务系统中主要有两类用户:管理员、普通人员。每一类用户都有自己的权限,不同用户登陆系统后显示的菜单栏是不同的,显示每一类用户所对应的模块。
管理员用例主要包括注册登录、基本信息管理、历史物流管理、智能物流服务等模块,如图2.1所示。
表2-1 管理员登陆
项 | 描述 |
描述 | 用户输入用户名和密码之后,系统判断是管理员角色,登录智能物流服务系统 |
基本流程 |
|
返回数据 | 管理员登陆结果集 |
表2-2基本信息管理
项 | 描述 |
描述 | 登录成功,进入系统的基本信息管理界面,可以对基本信息管理进行操作 |
基本流程 |
|
返回数据 | 基本信息结果集 |
表2-3 物流服务管理
项 | 描述 |
描述 | 管理员可以进入物流管理界面,可以对智能物流服务信息管理进行操作 |
基本流程 |
|
返回数据 | 物流结果集 |
表2-4 智能物流服务数据管理
项 | 描述 |
描述 | 管理员可以进入智能物流服务界面,可以对智能物流服务进行操作 |
基本流程 |
|
返回数据 | 智能物流服务结果集 |
用户主要包括注册登录、基本信息查询、历史物流查询、智能物流服务等模块,如图2.5所示。
表2-5 用户登陆
项 | 描述 |
描述 | 用户输入用户名和密码之后,系统判断是管理员角色,登录智能物流服务系统 |
基本流程 |
|
返回数据 | 管理员登陆结果集 |
表2-6个人基本信息管理
项 | 描述 |
描述 | 登录成功,进入系统的基本信息管理界面,可以对基本信息管理进行操作 |
基本流程 |
|
返回数据 | 基本信息结果集 |
表2-7 智能物流服务查询
项 | 描述 |
描述 | 管理员可以进入物流管理界面,可以对智能物流服务信息管理进行操作 |
基本流程 |
|
返回数据 | 物流结果集 |
表2-8 智能物流服务
项 | 描述 |
描述 | 管理员可以进入智能物流服务界面,可以对智能物流服务进行操作 |
基本流程 |
|
返回数据 | 智能物流服务结果集 |
2.2 所需技术分析
Flask是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯网络IP 集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。这套框架是以比利时的吉普赛爵士吉他手Flask Reinhardt来命名的。2019年12月2日,Flask 3. 0发布 。
Flask是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Dj ango框架中,还包含许多功能强大的第三方插件,使得Flask具有较强的可扩展性。Flask 项目源自一个在线新闻 Web 站点,于 2005 年以开源的形式被释放出来。其工作流程主要可划分为以下几步:
1.用manage .py runserver 启动Flask服务器时就载入了在同一目录下的settings .py。该文件包含了项目中的配置信息,如前面讲的URLConf等,其中最重要的配置就是ROOT_URLCONF,它告诉Flask哪个Python模块应该用作本站的URLConf,默认的是urls .py。
2.当访问url的时候,Flask会根据ROOT_URLCONF的设置来装载URLConf。
3.然后按顺序逐个匹配URLConf里的URLpatterns。如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)。
4.最后该view函数负责返回一个HttpResponse对象。
MySQL是关系型数据库管理系统(RDBMS),是RDBMS中最流行的一种,且许多操作系统上都能运行 MySQL。安装容易,运营成本低,便于维护。与其他大型数据库相比,对初学者更加友好,容易学习。与此同时,MySQL也是网络应用的最佳RDBMS之一[14]。
2.3系统可行性
在深入了解一个物流服务的运行状况和管理方式之后,为了更好的对物流服务运作进行分析。从经济可行性、技术可行性和操作可行性三个角度对智能物流服务系统进行了探讨。
智能物流系统是一种基于大数据和人工智能技术的高效物流管理系统,它能够实时监控和优化物流运输过程,提高物流运作的效率和可靠性。对于智能物流系统的经济可行性分析,以下几个方面需要考虑:
成本效益:智能物流系统的引入和运营成本是一个重要的考虑因素。包括硬件设备、软件开发和维护、培训等方面的成本。与传统物流系统相比,智能物流系统能够通过优化路线规划、降低库存成本、减少人力资源的使用等方面带来成本节约。
运营效率提升:智能物流系统能够通过实时监控和数据分析,优化物流流程、提高货物跟踪和配送的准确性和可靠性,减少物流延误和损失。这将带来更高的客户满意度和业务增长,从而增加收入。
资源利用率提升:智能物流系统可以帮助企业更好地管理仓储和车辆调度,提高资源的利用效率,减少浪费和空置,降低运营成本。
数据分析和决策支持:智能物流系统通过收集和分析大数据,提供实时的运营指标和预测模型,帮助企业进行决策和规划。这将帮助企业更好地应对市场需求变化,提前进行调整和优化。
竞争优势:智能物流系统的引入可以提升企业在市场上的竞争力。通过提供更高效、更可靠的物流服务,企业能够吸引更多的客户和合作伙伴,扩大市场份额。
综上所述,基于大数据的智能物流系统具有较高的经济可行性。然而,具体的可行性分析需要根据不同企业的情况和实际需求进行评估,并综合考虑其成本效益、运营效率提升、资源利用率、数据分析和决策支持以及竞争优势等方面的因素。
本系统应用的开发使用了MySQL作为智能物流服务系统相关数据的存储中心。采用的语言是稳定的Python语言,整体开发架构是:后端使用的是:Flask框架,Flask目前被许多大公司使用,是一个可靠的技术框架,前端使用的echarts组件等,操作流畅、运行速度快。因此,该系统在技术上是足够可行的。
智能物流系统是基于大数据技术的物流管理系统,它利用大数据分析和智能算法来提高物流效率、优化资源配置和降低成本。下面是对其操作可行性的分析:
数据收集和处理:智能物流系统需要大量的数据来支持其算法和决策,包括实时的物流运输数据、供应链数据、交通信息等。这些数据的收集和处理需要一定的技术和设备支持,包括传感器、物联网设备、云计算平台等。目前,这些技术已经相对成熟,操作上也相对可行。
数据存储和安全:智能物流系统需要大规模的数据存储和管理,以确保数据的可访问性和安全性。云计算和大数据存储技术可以提供高效的数据存储和管理解决方案,并且具备较高的安全性。同时,要注意遵守相关的数据隐私保护法规,确保数据的合法使用和保护。
算法和模型开发:智能物流系统依赖于各种算法和模型来进行数据分析和决策支持。这些算法和模型需要根据具体的物流需求进行开发和优化,以确保其准确性和可靠性。大数据技术提供了强大的计算能力和算法支持,操作上也相对可行。
系统集成和协同配合:智能物流系统需要与其他相关系统进行集成和协同配合,包括供应链管理系统、仓储管理系统等。这需要一定的技术和资源投入,但是随着企业信息化程度的提高和技术成熟度的增加,系统集成和协同配合的操作也相对可行。
总体来说,基于大数据的智能物流系统的操作可行性较高,但在实施过程中需要注意数据安全和隐私保护的问题,并根据具体情况进行系统定制和优化。
3.1设计目标
本管理系统是为了深入研究物流服务等业务模块,基于Python和大数据技术,设计和实现一个物流系统,旨在未来物流服务,帮助相关人员做好防汛准备工作。该系统通过收集和分析气象数据、历史智能物流服务数据等,运用机器学习算法或统计模型进行智能物流服务,为物流部门提供可靠的决策依据。
3.2物流服务数据采集设计
采集物流过程中的实时数据通常包括货物位置、运输状态、温度、湿度等信息。下面是一个常见的实时数据采集过程:
传感器安装:在货物、运输工具或仓库等关键位置安装传感器设备。这些传感器可以是GPS定位传感器、温湿度传感器、加速度传感器等,具体根据需要而定。
数据采集:传感器设备通过无线通信方式将采集到的数据传输给数据采集设备。数据采集设备可以是物联网网关、移动终端设备或专门的数据采集器。
数据传输:采集到的数据可以通过无线网络(如Wi-Fi、蜂窝网络)或有线网络(如以太网、RS-485)传输。数据传输方式根据实际情况选择,确保数据能够实时传输到指定的数据中心或云平台。
数据处理与存储:接收方的数据中心或云平台负责接收、解析和存储采集到的数据。这些数据可以通过数据处理算法进行实时分析和处理,以提取有用的信息。
数据展示与应用:经过处理的数据可以通过可视化界面展示给相关人员,例如物流管理人员、客户等。同时,这些数据也可以用于物流管控、预警通知、数据分析等应用,以提高物流效率和服务质量。
综上所述,采集物流过程中的实时数据需要安装传感器设备、进行数据采集与传输,然后在数据中心或云平台进行处理和存储,最后通过可视化界面展示和应用。
3.3 智能物流数据分析设计
卷积神经网络(Convolutional Neural Network, CNN)可以用于智能物流服务任务。下面是一个基本的卷积神经网络智能物流服务的流程:
数据准备:收集智能物流服务相关的数据集,包括气象数据、历史智能物流服务数据等。将数据集划分为训练集和测试集。
数据预处理:对数据进行预处理,包括数据清洗、归一化等。常见的预处理步骤包括特征缩放、平均值去除、标准化等。
构建 CNN 模型:使用卷积神经网络构建智能物流服务模型。CNN模型通常由多个卷积层、池化层和全连接层组成。卷积层用于提取图像特征,池化层用于减小特征图的尺寸,全连接层用于输出结果。
编译模型:选择适当的损失函数和优化算法,并编译模型。常见的损失函数包括均方误差(Mean Squared Error, MSE)和交叉熵(Cross Entropy),常见的优化算法包括随机梯度下降(Stochastic Gradient Descent, SGD)和Adam等。
训练模型:使用训练集对模型进行训练。通过反向传播算法,优化模型的参数以最小化损失函数。可以设置合适的训练轮数(epochs)和批量大小(batch size)。
模型评估:使用测试集评估模型性能。常见的评估指标包括准确率(accuracy)、精确度(precision)、召回率(recall)等。
结果:使用训练好的模型对新的输入数据进行。将输入数据输入到模型中,获取模型的输出结果。
结果分析和优化:分析模型的结果,并根据需要进行模型优化和调整,例如调整网络架构、调整超参数、增加数据量等。
需要注意的是,智能物流服务是一个复杂的问题,单独使用卷积神经网络可能无法达到很高的准确率。通常需要结合其他气象学知识、特征工程和模型融合等方法来提高智能物流服务的效果。以上流程仅为基本示例,实际应用中可能需要根据具体情况进行修改和优化。
模型共包含9层(输入、输出和7个隐藏层)。隐藏层在ConvLSTM2D层和BatchNormalization层之间交换。ConvLSTM2D层就像简单的LSTM层,但是它们的输入和循环转换卷积。ConvLSTM2D层在保留输入维度的同时,随着时间的推移执行卷积运算。你可以把它想象成一个简单的卷积层,它的输出被压平,然后作为输入传递到一个简单的LSTM层。ConvLSTM2D层接收形式为(samples, time, channels, rows, cols)的张量作为输入,输出形式(samples, timesteps, filters, new_rows, new_cols)。所以它们在一段时间内对一系列帧进行运算。
ConvLSTM2D层之间的BatchNormalization层进行归一化操作
对于所有的层(除了输出层),都使用LeakyRelu激活函数,他比ReLu好一些,并且和ReLu一样快。
该模型采用二元交叉熵损失函数和Adadelta梯度下降优化器进行拟合。由于数据的高维数,Adadelta会比经典Adam优化器有更好的结果。模型训练了25个epoch(之后开始过拟合)。
图3-3 CNN算法的过程
智能物流分析算法是一种利用人工智能和数据分析技术来提升物流运营效率的方法。它可以对物流网络进行优化,提供最佳的路径规划、运输调度和货物配送等决策支持。
智能物流分析算法通常包括以下几个方面的内容:
路径规划:通过分析不同路径的交通状况、距离、运输成本等因素,找出最佳的路径规划方案。这可以帮助物流企业减少运输时间和成本,提高运输效率。
运输调度:根据货物的数量、种类、发货地点和目的地等信息,结合实时交通情况和运力资源的变化,制定最佳的运输调度计划。这可以帮助物流企业合理安排车辆和司机资源,提高运输效率和服务质量。
货物配送:基于大数据分析和机器学习技术,对不同区域的货物需求进行预测和优化,提前准备好库存,并通过合理的配送路线和时间窗口,实现货物的快速、准确配送。这可以帮助物流企业提高货物满足率和客户满意度。
在线监控与预警:通过物联网和传感器技术,对运输车辆、仓库和货物进行实时监控,及时发现异常情况并进行预警。这可以帮助物流企业及时应对各种风险和问题,保障货物的安全和质量。
综上所述,智能物流分析算法利用人工智能和数据分析技术,通过优化路径规划、运输调度和货物配送等方面,提升物流运营效率,降低成本,提高客户满意度。
表3-4 CNN模型构建核心代码
import pandas as pd # 读取数据 data = pd.read_csv('logistics_data.csv') # 数据预处理# 1. 删除缺失值 data.dropna(inplace=True) # 2. 将时间字符串转换为时间戳 data['time'] = pd.to_datetime(data['time']) # 物流时间分析# 1. 计算每个订单的物流时间 data['delivery_time'] = data['delivery_time'] - data['order_time'] # 2. 计算平均物流时间 mean_delivery_time = data['delivery_time'].mean() # 物流费用分析# 1. 计算每个订单的物流费用 data['delivery_cost'] = data['distance'] * data['weight'] * data['unit_price'] # 2. 计算平均物流费用 mean_delivery_cost = data['delivery_cost'].mean() # 可视化分析import matplotlib.pyplot as plt # 物流时间可视化 plt.hist(data['delivery_time'], bins=20) plt.axvline(x=mean_delivery_time, color='r', linestyle='--', label='Mean Delivery Time') plt.legend() plt.xlabel('Delivery Time (Days)') plt.ylabel('Frequency') plt.title('Delivery Time Distribution') plt.show() # 物流费用可视化 plt.hist(data['delivery_cost'], bins=20) plt.axvline(x=mean_delivery_cost, color='r', linestyle='--', label='Mean Delivery Cost') plt.legend() plt.xlabel('Delivery Cost (RMB)') plt.ylabel('Frequency') plt.title('Delivery Cost Distribution') plt.show() |
基于Flask的智能物流服务可视化分析平台的基本业务功能是采用Flask框架实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。
4.1 开发环境与配置
本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装物流端软件,交互性更强。基于Flask的智能物流服务可视化分析平台使用IDEA集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行,本地 是Apache的核心项目,其技术先进、性能稳定并且开源免费,因而被普遍应用。本系统的主要开发环境以及开发工具如表4-1所示。
表4-1 系统开发环境和工具
项目 | 系统环境及版本 |
硬件环境 | Windows 64 位操作系统 |
Python | Python2.6 |
数据库 | MySql |
开发工具 | Pycharm |
项目架构 | Flask |
本系统使用集成开发工具Pycharm进行开发,由于 IDEA 中本地配置详细资料有很多,不做详细赘述, 本文主要介绍 Flask框架,首先需要在项目中中引入各框架以及数据库连接等所需要工具包。
图4-1 后台的配置文件
4.2 数据库的设计
数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、智能物流服务可视化等数据库表。
用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-2所示:
图4-2 用户实体属性图
根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对智能物流服务可视化的管理,使智能物流服务可视化与用户实体存在对应关系。
4.3 系统功能模块实现
用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。具体流程如时序图如4-2所示。
图4-3登录界面图
图4-2登录认证流程图
4.3.2智能物流服务数据管理功能
物流服务管理功能是对物流服务进行查询,删除等操作的功能集合,物流服务管理功能使用到了物流服务表,智能物流服务可视化分析系统的智能物流服务管理功能界面如下图所4-4所示:
图4-4 智能物流服务数据管理
智能物流服务管理功能流程功能图如图4-5所示:
图4-5 智能物流服务历史管理功能流程图
通过“智能物流服务可视化分析”按钮,进入智能物流服务可视化分析界面,用户可以看到智能物流服务可视化列表,例如:智能物流服务可视化名称、所属类别、长度、智能物流服务可视化目的地、智能物流服务可视化源、智能物流服务可视化时间的详细信息。通过此界面,用户可以对智能物流服务可视化进行删除管理操作。
4.3.3智能物流服务可视化功能
数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的
数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结
构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式
进行展示,从而形象直观地表达数据蕴含的信息和规律。
图4-6 智能物流服务可视化界面
智能物流服务可视化分析开发的难点并不在于图表类型的多样化,而在于如何能在简单的一页之内让用户读懂智能物流服务可视化数据之间的层次与关联,这就关系到布局、色彩、图表、动效的综合运用。如排版布局应服务于业务,避免为展示而展示;配色一般以深色调为主,注重整体背景和单个视觉元素背景的一致性。本文使用Echarts中地图、线条等组件,将分析结果较为直观的展示给平台用户,使得用户能够简便的获取有效的信息。
4.4 本章小结
本章主要分析了基于Flask的智能物流服务可视化分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的智能物流服务可视化分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是html实现。
5.1后台登录页面
该功能是用于用户登陆智能物流服务系统,当用户输入用户名和密码之后,经过数据校验,成功则进入主页面。
该后台登录功能,通过向后台登录接口发送请求,如图5.1是后台登录界面。登陆成功,则提示登陆成功,并跳转到物流管理信息界面,如图5.2所示。
图 5. 1 后台登录页面截图
图 5. 2 登录成功页面
5.2信息管理
智能物流服务信息管理功能:实现智能物流服务信息的相关操作。如图5.3是物流管理详情界面,进入物流管理界面,加载完毕则显示所有的智能物流服务信息。
添加智能物流服务信息:进行添加操作后,会弹出一个dialog让用户输入智能物流服务信息。表单带*号的需要验证输入合法性,如图5.4所示。
图 5. 3 智能物流服务信息管理
数据分类模块就是对我们采集和计算的分析结果的展示。数据分析模块的
数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结
构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式
进行展示,从而形象直观地表达数据蕴含的信息和规律。物流服务大数据看板界面如图5-4所示。
图5-7物流服务大数据分析平台界面
6.1 系统开发遇到的问题
由于基于大数据的智能物流系统是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括大数据技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。
由于时间有限,智能物流服务系统在满足基本功能的同时,也存在着一些不足。如功能和安全性不够完善,页面的布局与市场上的一些信息管理系统还是有很大的差距等。因此,在系统需求分析与系统设计初期,必须进行更多的研究,对气象局的具体经营状况进行更深入的探讨。这样,才能开发出一个真正能满足物流服务业务需求的智能物流服务系统。存在的不足和后续需要改进的地方如下几个方面:
1)确保数据真实性和美化界面,在整个系统 UI 界面的样式和配色应该进行更详细的设计的美化,改善用户体验。
2)在登陆时采用更安全的加密方法,确保系统的安全。
当我的毕业论文接近尾声时,我意识到我很快就会进入社会。这次经历让我体会到如何自己发现和解决问题,以及会去思考更优解。在未来,我会朝自己选择的方向不断努力。
- 于瑶瑶. 智能物流服务系统的设计与实现[D]. 济南: 山东大学, 2019.
- 刘文博. 智能物流服务系统的设计与实现[D]. 吉林大学, 2016.
- 于隆. 中小智能物流服务系统的设计与实现[D]. 大连理工大学, 2015
- Liu N, Chen L J, University Q N. Management System Design of Stocking, Selling and Storing of Enterprises[J]. Journal of Hebei North University, 2016.146-152.
- Bose Indranil, Pal Raktim, Ye Alex. ERP and SCM systems integration:The case of a valve manufacturer in China[J]. Information & Management. 2008, 45(4):233~241.
- 陈京民. 管理信息系统[M]. 北京:清华大学出版社, 2006.136~137.
- 陈晓. 制造物流服务ERP深化应用研究[D]. 华北电力大学, 2014:6~8.
- 廖芹等. 工业物流服务库存管理信息系统的设计和研究[J]. 华南理工大学学报,2019(5): 254~260.
- 张瑞君, 孙玥璠, 石保俊. 中国物流服务 ERP 投资关键信息披露问题研究[J]. 会计研究, 2018, 02:55-62+96.
- 刘华敏,李玉. 智能物流服务系统的设计与实现[J]. 电脑知识与技术, 2018, (11) :34~37.
- 徐鑫, 何红军, 包玉玲. 供应链中库存管理的研究[J]. 自然科学,2005, 3(6): 46~52.
- 邓笑. 基于Spring Boot的校园轻博客系统的设计与实现[D].华中科技大学, 2018.
- 王松. Spring Boot+Vue全栈开发实战[M]. 北京:清华大学出版社, 2018.12.
- 冰河. MySQL技术大全: 开发优化与运维实战[M]. 北京:机械工业出版社, 2020.11.
- 苏阳. 物流服务在线进销存管理信息系统的设计与实现[D]. 北京工业大学, 2016.
- 王崇娴. 中小型智能物流服务信息系统的设计与实现[D]. 江西财经大学, 2017.12.
- James A O'Brien. Managing Information Technology in the E-Business Enterprise[M]. Mcgraw -Hill, 2009, 77-89.