定义和使用 D-分离准则是贝叶斯网络(Bayes Nets)中的核心概念。在包含多个随机变量的系统中,该方法用于判断在给定其他变量观测条件下,事件A与B是否条件独立。 应用实例: 医疗场景:分析疾病与症状之间的因果关系和影响关系。 核心问题表述: “给定一个贝叶斯网络和一组已观测节点(C,D),能否确保(A)和(B)在此条件下相互条件独立?” 数学表达: A ⊥ B | C, D