分类预测|基于时域卷积TCN结合注意力机制的数据分类预测Matlab程序TCN-Attention

分类预测|基于时域卷积TCN结合注意力机制的数据分类预测Matlab程序TCN-Attention

一、基本原理

TCN-Attention模型结合了时域卷积网络(TCN)和自注意力机制(Attention),将两者的优点结合用于分类预测任务。下面详细介绍它们的原理和流程:

TCN(时域卷积网络)

  1. 时域卷积(Temporal Convolution)

    • TCN主要用于处理时间序列数据。它通过一系列卷积操作来捕捉时间序列中的局部模式。
    • 因果卷积(Causal Convolution):为了保持时间序列的时间顺序性,TCN使用因果卷积,这样模型的预测只依赖于当前和过去的信息,而不会泄露未来的信息。
    • 扩张卷积(Dilated Convolution):通过在卷积核之间插入零,扩张卷积能够捕捉更大范围的上下文信息而不增加计算复杂度。
  2. 网络结构

    • 堆叠的卷积层:多层卷积堆叠在一起,使得网络能够学习更复杂的时间序列特征。
    • 跳跃连接:TCN中使用跳跃连接来避免梯度消失问题,并加快训练速度。

Attention(自注意力机制)

  1. 自注意力机制

    • 自注意力机制允许模型在处理每个元素时,关注序列中其他元素的信息。这种机制能够捕捉到全局的依赖关系,增强模型对序列中重要部分的感知能力。
    • 计算过程
      • 查询、键、值(QKV):通过将输入序列映射到查询(Q)、键(K)、值(V)三个向量,计算注意力分数。
      • 注意力权重:通过计算查询和键之间的点积,得到每个位置的注意力权重,然后将这些权重应用于值向量来得到加权和。
      • 加权和:得到的加权和代表了输入序列的自注意力特征。
  2. 应用

    • 自注意力机制能够捕捉序列中任意两个位置之间的关系,使得模型能够理解长距离的依赖。

TCN-Attention模型流程

  1. 输入数据

    • 将时间序列数据作为输入。
  2. TCN特征提取

    • 通过TCN网络对输入数据进行处理,提取局部的时间序列特征。经过多层卷积和扩张卷积操作,捕捉时间序列中的复杂模式。
  3. 自注意力机制

    • 将TCN提取的特征作为自注意力机制的输入。自注意力机制计算全局的依赖关系,进一步提取序列中的重要信息。
  4. 特征融合

    • 将自注意力机制的输出与TCN的特征进行融合。这可以通过将它们拼接、加权求和或者其他方式进行融合,以结合局部和全局的信息。
  5. 分类预测

    • 将融合后的特征输入到分类器(如全连接层、Softmax层等),得到最终的分类预测结果。
  6. 训练与优化

    • 使用损失函数(如交叉熵损失)和优化算法(如Adam优化器)对模型进行训练,以优化模型参数。

总结

TCN-Attention模型结合了时域卷积网络和自注意力机制的优点,既能够捕捉时间序列的局部特征,又能够理解全局的依赖关系,从而在分类任务中取得更好的性能。TCN处理局部时间模式,自注意力机制捕捉全局依赖,二者的结合能够有效提升分类预测的准确性。

二、实验结果

matlab版本要求:2023a以上

基于时域卷积TCN结合注意力机制的数据分类预测Matlab程序
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当您提到带有注意力机制时域卷积神经网络模型,我假设您是指将注意力机制应用于TCN中的某一层。下面是一个示例代码,展示了如何在TCN的第三个卷积层上应用注意力机制: ```python import tensorflow as tf from tensorflow.keras.layers import Conv1D, Dense, Activation, Add, Multiply, Softmax from tensorflow.keras.models import Model def attention_block(input_tensor): # 注意力机制的实现 attention_weights = Dense(int(input_tensor.shape[-1]), activation='softmax')(input_tensor) attention_output = Multiply()([input_tensor, attention_weights]) return attention_output def create_tcn_model(nb_filters, kernel_size, dilations, use_skip_connections=True): input_shape = (input_length, input_dim) # 输入层 inputs = tf.keras.Input(shape=input_shape) # TCN卷积层 x = inputs for dilation_rate in dilations: x = Conv1D(filters=nb_filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate)(x) x = Activation('relu')(x) if use_skip_connections: x = Add()([x, inputs]) # 注意力机制应用于第三个卷积attention_output = attention_block(x) # 输出层 outputs = Dense(num_classes, activation='softmax')(attention_output) # 创建模型 model = Model(inputs=inputs, outputs=outputs) return model # 参数设置 nb_filters = 64 kernel_size = 3 dilations = [1, 2, 4, 8] use_skip_connections = True input_length = 100 input_dim = 10 num_classes = 2 # 创建TCN模型 tcn_model = create_tcn_model(nb_filters, kernel_size, dilations, use_skip_connections) ``` 在上述代码中,`attention_block`函数实现了注意力机制,它接受一个输入张量,并通过全连接层计算注意力权重,然后将注意力权重应用到输入张量上。`create_tcn_model`函数创建了一个TCN模型,其中的第三个卷积层后面应用了注意力机制注意力机制可以根据输入张量的不同权重来调整模型对每个时间步的关注程度。最后,通过使用Keras的Model类,我们定义了输入和输出,并创建了TCN模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值