MATLAB语音共振峰提取系统是一个用于从语音信号中提取共振峰位置和幅度的系统。共振峰提取是语音信号分析中的一个重要步骤,可以用于语音识别、语音合成等应用中。
下面是一个简单的MATLAB语音共振峰提取系统的示例代码:
% 读取语音信号
[x, fs] = audioread('speech.wav');
% 预加重
preemphasis = [1, -0.97];
x_preemph = filter(1, preemphasis, x);
% 分帧
frameSize = 0.02; % 帧长为20ms
frameShift = 0.01; % 帧移为10ms
frameLen = frameSize * fs;
frameStep = frameShift * fs;
numFrames = fix((length(x_preemph) - frameLen) / frameStep) + 1;
frames = zeros(frameLen, numFrames);
for i = 1:numFrames
frames(:, i) = x_preemph((i-1)*frameStep+1:(i-1)*frameStep+frameLen);
end
% 对每一帧进行共振峰提取
numCoeffs = 12; % LPC系数的阶数
resonancePeaks = zeros(numCoeffs, numFrames);
for i = 1:numFrames
frame = frames(:, i);
% 计算自相关函数
autocorr = xcorr(frame, numCoeffs-1);
% 计算LPC系数
lpcCoeffs = levinson(autocorr, numCoeffs);
% 求解LPC谱
[lpcSpectrum, frequencies] = freqz(1, lpcCoeffs, frameLen, fs);
% 提取共振峰位置和幅度
[peaks, peakIndices] = findpeaks(abs(lpcSpectrum));
% 存储共振峰信息
resonancePeaks(:, i) = [frequencies(peakIndices); peaks];
end
% 显示共振峰信息
figure;
plot(resonancePeaks(1,:), resonancePeaks(2,:), 'o');
xlabel('Frequency (Hz)');
ylabel('Magnitude');
title('Resonance Peaks');
在上述代码中,首先使用audioread函数读取一个语音信号文件。然后,通过预加重操作对语音信号进行预处理。接下来,将语音信号分成多个帧,并使用自相关函数和Levinson-Durbin算法计算每一帧的LPC系数。最后,使用频域分析得到LPC谱,并通过寻找峰值得到共振峰的位置和幅度。将共振峰信息绘制出来,可以直观地显示语音信号的共振峰分布情况。
请注意,上述代码仅为示例代码,并未涵盖完整的语音共振峰提取算法,实际使用时可能需要进行更多的参数调整和错误处理。

299

被折叠的 条评论
为什么被折叠?



