深度学习方法 _如何使用U-Net分割模型来处理耕地提取与耕地非农化分割数据集数据集 来进行土地非农化监测,土地利用变化监测,耕地识别等应用
以下文字及代码仅供参考。
文章目录

处理应用_农业类_耕地提取与耕地非农化分割数据集,共5000余对 512×512尺寸不同时期的高分二遥感影像,标注耕地非农化情况,标注每一时相耕地覆盖情况,时相之间的耕地变化情况,取样位置包括河北,山东,陕西,湖北等地,11GB数据量(数据为红绿蓝+近红外4通道数据,16bit),用于土地非农化监测,耕地识别等应用
采用深度学习方法来进行处理,使用卷积神经网络(CNN)进行分类或分割任务。
使用U-Net这种流行的分割模型来处理您的数据集。U-Net适合于医学图像分割问题,也广泛应用于遥感图像处理领域。
数据准备
首先,确保你的数据被正确组织。假设你的数据集按照如下结构组织:
dataset/
├── train/
│ ├── images/ # 存放训练集的影像
│ └── masks/ # 存放训练集的标签(即耕地覆盖情况)
├── val/
│ ├── images/
│ └── masks/
└── test/
├── images/
└── masks/
每个图像文件夹下的图像是4通道的TIFF格式文件,而相应的mask文件夹下存放的是单通道的标签图像(例如,0代表非耕地,1代表耕地)。
安装依赖项
为了加载并处理这些数据,你可能需要安装一些额外的库,比如rasterio
用于读取多波段影像,torchvision
和segmentation_models_pytorch
用于构建和训练分割模型。
pip install rasterio torch torchvision segmentation-models-pytorch
数据加载器
编写一个自定义的数据加载器以适应4通道16位图像格式:
import rasterio
from torch.utils.data import Dataset, DataLoader
import numpy as np
import torch
class AgriDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = sorted(os.listdir(image_dir))
self.masks = sorted(os.listdir(mask_dir))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.image_dir, self.images[idx])
mask_path = os.path.join(self.mask_dir, self.masks[idx])
with rasterio.open(img_path) as src:
img = src.read() # (C, H, W)
img = img.astype(np.float32) / 65535.0 # Normalize 16-bit data to [0, 1]
mask = np.array(Image.open(mask_path)).astype(np.float32)
if self.transform is not None:
augmented = self.transform(image=img.transpose(1,2,0), mask=mask)
img, mask = augmented['image'], augmented['mask']
return torch.from_numpy(img).float(), torch.from_numpy(mask).long()
# 示例:创建数据加载器
from torchvision import transforms
transform = transforms.Compose([
# 添加必要的数据增强和预处理步骤
])
train_dataset = AgriDataset('path/to/train/images/', 'path/to/train/masks/', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
模型训练
这里我们使用U-Net作为基础模型:
from segmentation_models_pytorch import Unet
model = Unet(encoder_name='resnet34', encoder_weights=None, in_channels=4, classes=2) # 输入4通道,输出2类(耕地和非耕地)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
# 训练循环
for epoch in range(num_epochs):
model.train()
for images, masks in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, masks)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')
模型评估与推理
训练完成后,可以对验证集或测试集进行评估,并使用模型进行预测:
# 简化的推理过程
model.eval()
with torch.no_grad():
for images, _ in val_loader:
outputs = model(images)
preds = torch.argmax(outputs, dim=1)
# 进一步处理preds...
同学。根据具体需求,你可能需要调整数据预处理步骤、模型架构及参数、训练策略等