E.观测概率转移概率矩阵B
答案:ABCDE
隐马尔可夫模型与马尔可夫模型的区别:正常的马尔可夫模型中,状态对观察者来说是____,但是隐马尔可夫模型中,状态是______,而需要通过受状态影响的变量进行观测。
答案:直接可见的、不直接可见的(无法直接观测)
-
隐马尔可夫模型要解决的三个问题:
-
评估问题:有效计算某一观测序列的概率
-
解码问题:寻找某种意义上最优的隐状态序列
-
学习问题:调整模型参数,使观测序列的可能性尽可能大
-
编程问题:实现模型的自主编程
答案是abc
现在回顾之前的内容。我们学到了:
-
大脑是有很多叫做神经元的东西构成,神经网络是对大脑的粗糙的数学表达。
-
每一个神经元都有输入、处理函数和输出。
-
神经元堆叠起来形成了网络,用作近似任何函数。
-
为了得到最佳的神经网络,我们用梯度下降方法不断更新模型
给定上述关于神经网络的描述,什么情况下神经网络模型被称为深度学习模型?
A.加入更多层,使神经网络的深度增加
B.有维度更高的数据
C.当这是一个图形识别的问题时
D.以上都不正确
答案:(A)
下列哪一项在神经网络中引入了非线性?
A.随机梯度下降
B.修正线性单元(ReLU)
C.卷积函数
D.以上都不正确
答案:(B)
假设目前的权重为w,偏置为b,下一时刻的权重为w’,偏置为b’,学习率为η,损失函数为C,请写出权重的更新规则为________,偏置的更新规则为________.
答案:
1.哪一类机器学习可以在未标注的数据中找出模式?
- 数据预言
- 有监督学习
- 无监督学习
- 监督逻辑
答案:C。
2.验证数据集的用途是什么?
- 测试模型是否对数据过度拟合
- 衡量模型的复杂度
- 在训练完成后评估模型拟合
- 测试模型在训练中的泛化程度
答案:D。
生成对抗网络通常与合成图像相关联。
- 迁移学习描述了“获取预训练神经网络并重新训练该网络以对一组新图像进行分类”的过程。
1、(对测试样本的识别准确率)是评价一个分类器好坏的最主要指标,如何提高分类器对测试样本的分类能力是近年来机器学习研究的一个重要内容。
2、SVM 是一种两类分类模型,其基本模型定义为特征空间上的(间隔最大) 的线性分类器。
下列哪个不是人工智能的研究领域(D)
A、机器证明
B、模式识别
C、人工生命
D、编译原理
4、人工智能是知识与智力的综合,其中下列不是智能的特征的是(A)
A、具有自我推理能力
B、具有感知能力
C、具有记忆与思维的能力
D、具有学习能力以及自适应能力
- CNN中()是局部连接,所以提取的是局部信息。 答案:卷积层
2.神经网络的一次误差反向传播算法可以()
答案:修改网络中所有神经元的参数
1.物联网为人工智能的( B )提供了基础设施环境,同时带来了多维度、及时全面的海量训练数据。
A.应用层 B.感知层 C.数据层 D.以上都是
2.无人超市采用了( A )等多种智能技术,消费者在购物流程中将依次体验自动身份识别、自助导购服务、互动式营销、商8品位置侦测、线上购物车清单自动生成和移动支付。
A.计算机视觉、深度学习算