基于Python的招聘网站信息爬取与数据分析系统,通过自动化技术提升数据的采集与分析效率。系统集成了智联招聘等主要招聘平台,利用Django框架和MySQL数据库构建了稳定的后端架构,确保了数据处理的安全性和可靠性。通过Echarts工具对数据进行可视化展示,本系统能够直观地呈现职位趋势和市场动态。项目探讨了大数据环境下招聘信息的智能处理机制,包括数据的预处理、清洗以及挖掘过程。
自动化爬取 (实时数据采集),线性回归预测算法 ,协同过滤推荐算法,可视化
5.1 登陆注册模块
5.2 数据模块
5.3 薪资分布模块
5.4 企业情况模块
5.5 学历分布模块
5.6 薪资预测算法实现模块
5.7 可视化地图实现模块
5.8 协同过滤推荐算法模块
5.9 自动化爬虫实现模块
通过相关的技术手段对招聘数据进行爬取,可以有效的提高招聘数据数据的效率。对采集到的数据进行清洗和预处理,包括去重、填充缺失值、转换数据类型等;将招聘数据存储到数据库中;利用数据分析工具和技术,借助数据库平台的优势可以对数据进行查询和统计,在实现用户对招聘数据的获取,并可以通过可视化平台对数据进行展现,提供系统内的信息检索手段,可以更有效的查询用户需要的招聘数据,最终实现了招聘数据的有效挖掘,提高了数据爬取的准确率,实现了数据的统计查询功能,并对爬取的数据进行管理,提高了工作效率。
1,个人中心:
个人信息管理:允许用户查看和编辑自己的个人资料,如姓名、联系方式、教育背景等。
密码修改:提供用户修改登录密码的功能,以维护账户安全。
2,数据采集中心:
数据源管理:管理数据采集的来源,确保数据的准确性和及时性。
数据抓取:实现从各类数据源自动抓取数据的功能,包括定时抓取和实时更新。
数据清洗:对抓取的数据进行清洗,去除不必要的信息,纠正错误,确保数据质量。
3,职位信息管理:
职位发布:允许招聘人员发布新的职位信息,包括职位描述、要求、薪资范围等。
职位编辑:对已发布的职位信息进行修改或更新。
职位下架:在职位填补或过期后,可以将其下架,不再对外显示。
4,推荐预测:
简历推荐:根据职位要求和求职者简历,自动推荐匹配度高的候选人。
薪资预测:分析职位特征和市场数据,预测职位的薪资水平。
职位推荐:向求职者推荐与其简历匹配度高的职位。
登录注册以及数据模块
薪资企业分布模块
薪资预测算法模块
可视化地图模块
协同过滤算法模块
自动化爬虫模块
Django后台管理实现
def main(self,**info):
if info['page'] < self.page:return
brower = self.startBrower()
brower.get(self.spiderUrl % (self.type,self.page))
time.sleep(15)
# return
# //*[@id="wrap"]/div[2]/div[2]/div/div[1]/div[1]/ul
job_list = brower.find_elements(by=By.XPATH, value="//ul[@class='job-list-box']/li")
for index,job in enumerate(job_list):
try:
print("爬取的是第 %d 条" % (index + 1))。。。。。。