【SCI2区】白鲸优化算法BWO-CNN-GRU-Attention用电需求预测Matlab实现

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 引言

电力需求预测是电力系统运行和管理的重要组成部分,准确的用电需求预测能够有效提高电力系统效率、降低运行成本并确保电力供应的可靠性。近年来,随着深度学习技术的快速发展,基于神经网络的用电需求预测模型取得了显著进展。然而,传统的深度学习模型往往受限于其对时间序列数据复杂特征的提取能力,难以有效地捕捉到用电需求的动态变化规律。为了克服这一问题,本文提出了一种融合白鲸优化算法(BWO)、卷积神经网络(CNN)、门控循环神经网络(GRU)和注意力机制(Attention)的混合预测模型,并利用Matlab编程实现。

2. 研究背景与意义

用电需求预测具有重要的现实意义,其应用领域广泛,主要包括:

  • **电力系统规划与调度:**准确预测用电需求可以为电力系统规划提供可靠的数据支撑,优化发电调度方案,确保电力供应的稳定性。

  • **电力市场交易:**预测用电需求能够帮助电力市场参与者制定合理的交易策略,提高市场效率,降低交易风险。

  • **电力设备运行与维护:**基于预测的用电需求可以为电力设备的运行维护提供指导,提前预警潜在的故障,提高设备利用率。

传统方法如时间序列分析、回归分析等在用电需求预测中存在局限性,难以有效处理非线性、非平稳时间序列数据。深度学习模型以其强大的特征提取能力为用电需求预测提供了新的思路,但其也面临着以下挑战:

  • **对时间序列数据的复杂特征提取能力不足:**传统的深度学习模型通常仅能提取单变量时间序列数据的局部特征,难以有效捕捉到多变量时间序列数据之间的相互影响。

  • **对非线性关系的建模能力有限:**用电需求受多种因素影响,呈现出高度的非线性关系,传统的深度学习模型难以有效地建模这些非线性关系。

  • **模型参数优化困难:**深度学习模型的参数众多,优化过程往往复杂,容易陷入局部最优解,难以找到全局最优解。

为了解决这些挑战,本文提出了一种融合白鲸优化算法、卷积神经网络、门控循环神经网络和注意力机制的混合预测模型,该模型能够有效地提取时间序列数据的复杂特征,并对非线性关系进行建模,同时利用白鲸优化算法进行参数优化,提高模型预测精度。

3. 模型框架

本文提出的BWO-CNN-GRU-Attention模型由以下几个部分组成:

  • **数据预处理:**对原始数据进行清洗、缺失值填充、特征工程等处理,为模型训练提供高质量的输入数据。

  • **卷积神经网络 (CNN):**CNN 能够有效地提取时间序列数据的局部特征,并对数据进行降维。

  • **门控循环神经网络 (GRU):**GRU 能够有效地捕捉时间序列数据的长时依赖关系,并对非线性关系进行建模。

  • **注意力机制 (Attention):**Attention 机制能够根据不同时间步长的重要程度进行权重分配,突出对预测结果影响较大的时间步长。

  • **白鲸优化算法 (BWO):**BWO 是一种基于群智能的优化算法,能够有效地优化模型参数,提高模型预测精度。

3.1 数据预处理

数据预处理是模型训练的第一步,主要包括以下几个环节:

  • **数据清洗:**去除异常值、重复值等无效数据,确保数据质量。

  • **缺失值填充:**采用合理的插值方法填充缺失数据,避免数据缺失对模型训练造成影响。

  • **特征工程:**根据业务需求和数据特征,对原始数据进行变换、组合等操作,生成新的特征,提高模型预测精度。

3.2 卷积神经网络 (CNN)

CNN 能够有效地提取时间序列数据的局部特征,并对数据进行降维。CNN 的核心思想是利用卷积核对输入数据进行特征提取,通过卷积操作提取数据的局部特征,并通过池化操作降低数据的维数。

3.3 门控循环神经网络 (GRU)

GRU 能够有效地捕捉时间序列数据的长时依赖关系,并对非线性关系进行建模。GRU 是一种特殊的循环神经网络,它引入了门控机制,能够控制信息的流动,有效地解决传统循环神经网络的梯度消失问题。

3.4 注意力机制 (Attention)

Attention 机制能够根据不同时间步长的重要程度进行权重分配,突出对预测结果影响较大的时间步长。Attention 机制能够根据输入数据的上下文信息,动态地调整对不同时间步长的关注度,有效地提取数据中的重要信息。

3.5 白鲸优化算法 (BWO)

BWO 是一种基于群智能的优化算法,能够有效地优化模型参数,提高模型预测精度。BWO 算法模拟了白鲸在海洋中捕食的行为,通过个体之间的相互合作和竞争,最终找到最优解。

4. 模型实现

本文利用Matlab编程实现BWO-CNN-GRU-Attention模型,具体实现步骤如下:

  • **准备数据集:**获取历史用电需求数据,并进行预处理。

  • **构建模型:**使用Matlab神经网络工具箱构建CNN、GRU和Attention层,并使用BWO算法对模型参数进行优化。

  • **模型训练:**利用训练数据集对模型进行训练,并使用验证数据集对模型进行评估。

  • **模型预测:**使用训练好的模型对未来用电需求进行预测。

5. 模型评估与结果分析

模型评估指标主要包括均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 等。通过比较不同模型的评估指标,可以评估模型的预测性能。

6. 结论

本文提出了一种融合白鲸优化算法、卷积神经网络、门控循环神经网络和注意力机制的混合预测模型,用于电力需求预测。该模型能够有效地提取时间序列数据的复杂特征,并对非线性关系进行建模,同时利用白鲸优化算法进行参数优化,提高模型预测精度。实验结果表明,该模型相较于其他传统模型具有更高的预测精度,在电力需求预测领域具有良好的应用前景。

7. 未来展望

未来的研究工作可以从以下几个方面进行:

  • **探索更有效的特征工程方法:**深入挖掘用电需求数据的特征,开发更有效的特征工程方法,提高模型的预测精度。

  • **研究更先进的深度学习模型:**探索新型深度学习模型,例如Transformer、图神经网络等,进一步提升模型的预测能力。

  • **结合其他外部因素:**将天气、经济等外部因素纳入模型,提高模型的预测精度和鲁棒性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值