图像预处理相关内容文献综述
-
背景
无人机是一种低空遥感技术,可以快速获取给定区域的图像,无人机在众多领域得到了广泛应用,如农业、测绘、灾害监测等。无人机图像作为获取信息的重要手段,其质量和准确性直接影响后续的分析和应用。在农田环境中利用无人机对农田进行监测过程包括数据采集、 图像预处理、图像拼接和图像识别,各个步骤都需要人工干预,耗时耗力,影响图像的时效性,而且作物关键生育期管理窗口期短,制约了无人机在农田监测效率。因此,开展无人机图像并行拼接 识别的研究,将无人机图像处理流程一体化并行化处理有利于去除人工干预、提高图像处理的效率, 以期实现基于无人机的地物分布快速监测识别。本文通过对相关文献的梳理,对图像预处理技术在无人机图像领域的应用进行综述。
-
目的
梳理并且整理图像预处理在无人机领域的研究现状以及实现方法与途径,总结实现图像拼接与矫正的步骤与技术。
2.1图像预处理在无人机影像处理的流程
1.数据获取
2.原始影像检查
数据完整性检查:检查采集到的影像数据是否完整,是否存在缺失或损坏的情况。
影像质量评估:对影像的清晰度、对比度、色彩平衡等进行初步评估,确定需要进行的预处理操作。
相关课程:b站:【图像质量评估指标 || PIQ || 有参 || 无参】图像质量评估指标 || PIQ || 有参 || 无参_哔哩哔哩_bilibili、【4 图像质量判定】https://www.bilibili.com/video/BV1qr4y1S763?vd_source=8d6397fbfed1f7bdfc8888879ac04970
3.几何校正
去除畸变:由于无人机镜头的光学特性,影像可能存在径向畸变和切向畸变。利用相机标定参数,通过畸变校正算法(如Brown-Conrady模型)对影像进行畸变校正。
地理配准:将影像与已知的地理坐标系统进行配准,使影像具有准确的地理位置信息。这通常需要利用地面控制点(GCPs)或GPS数据,通过空间变换算法(如仿射变换、投影变换等)实现。
相关资料:【OpenCV呕血推荐,简单易懂 9.2 图像校正代码实现(零基础 OpenCV学习课程)】OpenCV呕血推荐,简单易懂 9.2 图像校正代码实现(零基础 OpenCV学习课程)_哔哩哔哩_bilibili、【图像去畸变】[01] 图像去畸变_哔哩哔哩_bilibili(较短)、【ENVI进行图像到地图的几何校正,具有地理位置信息的几何校正】ENVI进行图像到地图的几何校正,具有地理位置信息的几何校正_哔哩哔哩_bilibili、
4.辐射校正
传感器校正:对无人机搭载的传感器进行校正,消除传感器本身的误差和噪声,如暗电流校正、增益校正等。
大气校正:由于大气散射和吸收的影响,影像的辐射值会发生变化。通过大气校正算法(如基于辐射传输模型的校正方法、基于图像特征的校正方法等),去除大气影响,提高影像的辐射精度。
相关资料:【ENVI图像处理——辐射校正】ENVI图像处理——辐射校正_哔哩哔哩_bilibili、【013 #ENVI-遥感影像预处理-辐射定标与大气校正(FLASSH大气模型)——以landsat8数据为例】013 #ENVI-遥感影像预处理-辐射定标与大气校正(FLASSH大气模型)——以landsat8数据为例_哔哩哔哩_bilibili。
5.图像增强
对比度增强:调整影像的对比度,使图像的细节更加清晰。常用的方法包括直方图均衡化、灰度拉伸等。
噪声去除:采用滤波算法(如高斯滤波、中值滤波、双边滤波等)去除影像中的噪声,同时尽量保留图像的边缘信息。
锐化处理:增强影像的边缘和细节,提高图像的清晰度。常用的方法包括拉普拉斯算子锐化、非锐化掩模等。
实现的相关资料或者视频: 【黑马程序员人工智能教程_10小时学会图像处理OpenCV入门教程】16.3.1 图像的透射变换_哔哩哔哩_bilibili、【Python 图像处理】Python 图像处理_哔哩哔哩_bilibili。
6.影像拼接
特征点提取:在相邻的影像中提取特征点,如SIFT、SURF等特征点检测算法。
特征点匹配:根据特征点的描述符,对相邻影像中的特征点进行匹配,找到对应的匹配点对。
单应性矩阵计算:利用匹配点对,通过最小二乘法等方法计算单应性矩阵,将不同影像转换到同一坐标系下。
图像融合:对拼接后的影像进行融合处理,消除拼接缝和过渡区域的不自然现象。常用的方法包括加权平均融合、多波段融合等。
实现的相关资料或者视频: 【黑马程序员人工智能教程_10小时学会图像处理OpenCV入门教程】16.3.1 图像的透射变换_哔哩哔哩_bilibili、【Python 图像处理】Python 图像处理_哔哩哔哩_bilibili。
7.影像裁剪与镶嵌
影像裁剪:根据实际需求,对拼接后的影像进行裁剪,去除多余的部分,得到所需的影像区域。
影像镶嵌:将多个裁剪后的影像进行镶嵌,形成一幅完整的影像图。
相关资料:【ENVI图像处理——镶嵌及裁剪】ENVI图像处理——镶嵌及裁剪_哔哩哔哩_bilibili(付费)
8.结果输出与存储
结果输出:将预处理后的影像以所需的格式(如JPEG、TIFF等)输出,以便后续的应用和分析。
结果存储:将预处理后的影像和相关数据存储到数据库或文件系统中,以便长期保存和管理。
流程图如图2-1所示:
图2-1 影像预处理流程图
三、无人机图像预处理的关键技术
3.1图像增强
图像增强旨在提高图像的清晰度和对比度,使图像中的特征更加明显。在无人机图像领域,常用的图像增强方法有直方图均衡化、伽马校正等。例如,通过直方图均衡化可以调整图像的灰度分布,增强图像的对比度,使图像中的细节更加清晰。相关研究表明,在农业无人机图像中应用图像增强技术可以有效提高农作物生长状况监测的准确性。
3.2图像滤波
图像滤波用于去除图像中的噪声,平滑图像。常见的滤波算法有高斯滤波、均值滤波、中值滤波等。高斯滤波是一种常用的线性滤波方法,通过对图像进行加权平均来平滑图像,同时保留图像的边缘信息。在无人机视频预处理中,高斯滤波算法可以有效降低图像的噪声,提高图像质量。双边滤波则是一种非线性滤波方法,它不仅考虑了像素的空间距离,还考虑了像素的灰度值差异,在去除噪声的同时能够更好地保护图像的边缘信息。
3.3图像融合
图像融合是将多幅图像的信息进行综合,以获得更全面、更准确的图像信息。在无人机图像领域,图像融合技术常用于多光谱图像融合、视频图像拼接等方面。例如,在农业遥感无人机中,通过将多光谱图像进行融合,可以获取更丰富的农作物生长信息。在无人机视频预处理中,图像融合操作可以将增益处理与平滑处理后的图像进行融合,提高图像的质量和视觉效果。如图所示:
图3-1无人机航拍图像
图3-2图像融合
图3-3图像加权融合
图3-4图像拼接结果
四、不同应用场景下的无人机图像预处理技术
4.1农业领域
随着无人机技术的发展和成熟,该技术应用越来越广泛。中国农业正在由传统农业逐渐转变为信息农业、智慧农业、精准农业,农业遥感无人机以其灵活性强、周期短、成本低、操作简单等优点成为现代农业的新宠儿。在农业领域,无人机图像预处理技术主要用于农情监测、病虫害识别等方面。例如,利用图像增强技术可以提高农作物叶片和冠层图像的清晰度,便于提取农作物的特征信息;通过图像滤波技术可以去除图像中的噪声,提高病虫害识别的准确性。相关研究表明,基于图像处理技术的无人机系统可以实现比人工观测更加高效的农田作业。
4.2测绘领域
在测绘领域,无人机图像预处理技术对于地形测量、城市三维建模等具有重要意义。由于无人机飞行过程中的姿态变化和外界环境的影响,采集到的图像可能存在倾斜、变形等问题。因此,需要对图像进行几何纠正、投影变换等预处理操作,以提高图像的精度和可靠性。例如,采用多项式处理方法、共线方程几何修正方法等对无人机遥感摄影图像进行处理,可以得到精确的地形信息。
4.3灾害监测领域
在灾害监测领域,无人机图像预处理技术可以帮助快速获取灾害区域的图像信息,为灾害评估和救援提供支持。例如,在地震、洪水等灾害发生后,利用无人机采集受灾区域的图像,并通过图像预处理技术去除噪声、增强图像对比度,可以更清晰地观察灾害情况,为救援决策提供依据。
五、常用图像预处理工具及平台
OpenCV是一个广泛应用于计算机视觉和图像处理的开源库,具有丰富的图像处理算法和工具。在无人机图像预处理领域,OpenCV提供了多种图像处理函数和模块,如图像滤波、图像增强、图像融合等。许多研究者利用OpenCV实现了无人机图像的预处理算法,取得了较好的效果。例如,有研究基于OpenCV实现了无人机视频的图像增益处理、高斯滤波、双边平滑以及图像融合操作,有效解决了无人机视频图像清晰度低、抖动等问题。
六、结论
图像预处理技术在无人机图像领域具有重要的应用价值。通过对图像进行增强、滤波、融合等预处理操作,可以提高图像的质量和准确性,为后续的图像分析和处理提供有力支持。不同的应用场景需要选择合适的图像预处理技术和方法,同时,随着技术的不断发展,还需要进一步提高图像预处理算法的效率、鲁棒性和适应性,以满足无人机图像处理的需求。未来的研究可以进一步探索新的图像预处理算法和技术,结合深度学习等方法,不断提高无人机图像的处理水平和应用效果。