题目描述
哥德巴赫猜想大家都知道一点吧。我们现在不是想证明这个结论,而是对于任给的一个不小于 6 的偶数,来寻找和等于该偶数的所有素数对。做好了这件实事,就能说明这个猜想是成立的。
要求程序定义一个 prime()函数和一个 main()函数,prime()函数判断一个整数 n 是否是素数,其余功能在 main()函数中实现。
int prime(int n)
{
//判断 n 是否为素数, 若 n 为素数,本函数返回 1,否则返回 0
}
输入描述
一个偶数 M (M 是 6 到 1000000 之间的一个偶数).
输出描述
输出和等于该偶数的所有素数对 a 和 b,按 a 递增的顺序输出,(a,b)和(b,a)被视为同一个素数对。
输入样例
40
输出样例
3 37
11 29
17 23
#include<stdio.h>
#include<math.h>
int prime(int n);
int main()
{
int M,j;
scanf("%d",&M);
if (M < 6 || M > 1000000 || M % 2 != 0) {
return 1; // 返回非0值表示程序异常退出
}
//两个数中必定有一个小于M
for(j=2;j<=M/2;j++)
{
if(prime(j)==1&&prime(M-j)==1)
{
printf("%d %d\n",j,M-j);
}
}
return 0;
}
int prime(int n)
{
int i,k;
if(n<=1)
{
return 0;
}
k=(int)sqrt(n);
for(i=2;i<=k;i++)
{
if(n%i==0)
{
return 0;
}
}
return 1;
}