Transformer实战(9)——Transformer分词算法详解

0. 前言

在自然语言处理领域,高效准确的分词算法是构建强大语言模型的基础。随着 Transformer 架构的广泛应用,子词分词算法已成为处理多语言文本和稀有词汇的关键技术。本文将从理论到实践,全面解析现代自然语言处理 (Natural Language Processing, NLP) 中最主流的三种分词方法:BPEWordPieceSentencePiece,探讨这些算法的核心原理和适用场景,并介绍使用 tokenizers 库训练分词器的完整流程。

1. 子词分词算法

BERT 语言模型一节中,我们使用 BertWordPieceTokenizer 分词器 (tokenizer) 训练了 BERT 模型。在本节中,我们将详细讨论分词过程。分词是将文本输入拆分为词元 (token),并为每个词元分配一个标识符,然后将其输入到神经网络架构中的过程。最直观的方法是根据空格将序列拆分成较小的块,但这种方法并不适用于所有语言,例如中文、韩语等,并且可能导致词汇表过大的问题。绝大部分 Transformer 模型都采用子词分词,不仅有助于降低维度

评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值