数据处理和分析之分类算法:逻辑回归(LogisticRegression):特征工程

数据处理和分析之分类算法:逻辑回归(LogisticRegression):特征工程

在这里插入图片描述

数据处理和分析之分类算法:逻辑回归 (Logistic Regression):特征工程

逻辑回归简介

逻辑回归的基本概念

逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计学方法,尤其是二分类问题。尽管其名称中包含“回归”一词,但实际上,逻辑回归是一种分类算法。它通过使用逻辑函数(通常是sigmoid函数)来预测数据属于某个类别的概率。逻辑回归模型可以表示为:

P ( Y = 1 ∣ X ) = 1 1 + e − ( β 0 + β 1 X 1 + β 2 X 2 + . . . + β n X n ) P(Y=1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_nX_n)}} P(Y=1∣X)=1+e(β0+β1X1+β2X2+...+βnXn)1

其中, P ( Y = 1 ∣ X ) P(Y=1|X) P(Y=1∣X)是给定特征 X X X时,数据属于类别1的概率; β 0 , β 1 , . . . , β n \beta_0, \beta_1, ..., \beta_n β0,β1,...,βn是模型的参数,需要通过训练数据来估计。

逻辑回归与线性回归的区别

逻辑回归与线性回归的主要区别在于它们解决的问题类型和输出的解释。线性回归主要用于预测连续值,而逻辑回归用于分类,特别是预测二分类结果的概率。此外,逻辑回归使用sigmoid函数将线性组合的输出转换为概率值,确保输出在0和1之间,适合分类任务。

示例:逻辑回归在二分类问题中的应用

假设我们有一个简单的数据集,包含两个特征 X 1 X_1 X1 X 2 X_2 X2,以及一个二分类目标变量 Y Y Y。我们将使用Python的scikit-learn库来实现逻辑回归模型。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix

# 创建一个简单的数据集
data = {
    'X1': [1, 2, 2, 3, 3, 4, 5, 5, 6, 7],
    'X2': [1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
    'Y': [0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
}
df = pd.DataFrame(data)

# 划分数据集为训练集和测试集
X = df[['X1', 'X2']]
y = df['Y']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建逻辑回归模型并训练
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 评估模型
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

在这个例子中,我们首先创建了一个包含两个特征和一个目标变量的简单数据集。然后,我们使用train_test_split函数将数据集划分为训练集和测试集。接着,我们创建了一个逻辑回归模型,并使用训练集来训练模型。最后,我们使用模型对测试集进行预测,并通过混淆矩阵和分类报告来评估模型的性能。

特征工程在逻辑回归中的作用

特征工程是数据预处理的一个关键步骤,它包括特征选择、特征创建、特征转换等,目的是为了提高模型的预测性能。在逻辑回归中,特征工程尤为重要,因为它直接影响模型的线性可分性和预测准确性。

特征选择

特征选择是选择对模型预测最有帮助的特征的过程。过多的特征不仅会增加模型的复杂性,还可能导致过拟合。在逻辑回归中,可以使用scikit-learnSelectKBestRFE(递归特征消除)等方法进行特征选择。

特征创建

特征创建是基于现有特征生成新的特征,以捕捉数据中的复杂关系。例如,可以创建特征的交叉项或多项式特征。

特征转换

特征转换是将特征转换为更有利于模型的形式。常见的转换包括归一化、标准化、对数转换等。例如,使用scikit-learnStandardScaler进行特征标准化:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

通过以上步骤,我们可以确保特征在相同的尺度上,从而避免某些特征因数值范围大而对模型产生过大的影响。

逻辑回归的特征工程不仅限于上述几点,还包括处理缺失值、编码分类变量、特征降维等。通过精心设计的特征工程,我们可以显著提高逻辑回归模型的性能和稳定性。

数据处理和分析之分类算法:逻辑回归 (Logistic Regression):特征工程

数据预处理

数据预处理是机器学习项目中至关重要的一步,它直接影响模型的性能和预测准确性。在逻辑回归分类算法中,数据预处理主要包括数据清洗、数据标准化与归一化、处理缺失值以及编码分类变量。下面将详细介绍这些步骤,并提供代码示例。

数据清洗

数据清洗涉及去除或修正数据集中的错误、不一致或无关的数据。这包括删除重复记录、修正格式错误、处理异常值等。

示例代码
import pandas as pd

# 加载数据
data = pd.read_csv('data.csv')

# 删除重复记录
data.drop_duplicates(inplace=True)

# 修正格式错误,例如将字符串类型的年龄转换为整数
data['年龄'] = data['年龄'].str.replace(',', '').astype(int)

# 处理异常值,例如年龄不能为负数
data = data[data['年龄'] >= 0]

数据标准化与归一化

数据标准化(Standardization)和归一化(Normalization)是将数据转换为统一尺度的过程,这对于逻辑回归等依赖于距离度量的算法尤为重要。

示例代码
from sklearn.preprocessing import StandardScaler, MinMaxScaler

# 创建标准化器
scaler = StandardScaler()
# 对数值型特征进行标准化
data[['年龄', '收入']] = scaler.fit_transform(data[['年龄', '收入']])

# 创建归一化器
normalizer = MinMaxScaler()
# 对数值型特征进行归一化
data[['年龄', '收入']] = normalizer.fit_transform(data[['年龄', '收入']])

处理缺失值

数据集中的缺失值可能会影响模型的训练和预测。常见的处理方法包括删除含有缺失值的记录、填充缺失值等。

示例代码
# 删除含有缺失值的记录
data.dropna(inplace=True)

# 或者填充缺失值,例如使用平均值填充
data['年龄'].fillna(data['年龄'].mean(), inplace=True)

编码分类变量

逻辑回归模型需要数值输入,因此需要将分类变量转换为数值形式。常见的编码方法有独热编码(One-Hot Encoding)和标签编码(Label Encoding)。

示例代码
from sklearn.preprocessing import OneHotEncoder, LabelEncoder

# 创建标签编码器
label_encoder = LabelEncoder()
# 对分类变量进行标签编码
data['性别'] = label_encoder.fit_transform(data['性别'])

# 创建独热编码器
one_hot_encoder = OneHotEncoder(sparse=False)
# 对分类变量进行独热编码
encoded_data = one_hot_encoder.fit_transform(data[['地区']])
# 将编码后的数据转换为DataFrame并合并到原始数据中
encoded_data = pd.DataFrame(encoded_data, columns=['地区_0', '地区_1', '地区_2'])
data = pd.concat([data, encoded_data], axis=1)

通过以上步骤,我们可以确保数据集适合逻辑回归模型的训练,提高模型的性能和预测准确性。在实际项目中,根据数据的具体情况,可能需要调整预处理的策略和方法。

数据处理和分析之分类算法:逻辑回归 (Logistic Regression):特征工程

特征选择与工程

相关性分析

相关性分析是特征工程中的一个重要步骤,用于评估特征与目标变量之间的关系强度。在逻辑回归中,我们通常关注特征与分类结果之间的线性关系。以下是一个使用Python和Pandas库进行相关性分析的例子:

import pandas as pd
import numpy as np
from scipy.stats import pearsonr

# 创建示例数据
data = {
    'Feature1': np.random.randn(100),
    'Feature2': np.random.randn(100) + 0.5 * np.random.randn(100),
    'Target': np.where(data['Feature1'] + data['Feature2'] > 0, 1, 0)
}
df = pd.DataFrame(data)

# 计算皮尔逊相关系数
corr1, _ = pearsonr(df['Feature1'], df['Target'])
corr2, _ = pearsonr(df['Feature2'], df['Target'])

print('Feature1与Target的相关性:', corr1)
print('Feature2与Target的相关性:', corr2)

在这个例子中,我们创建了两个特征Feature1Feature2,以及一个目标变量TargetTarget是根据Feature1Feature2的线性组合生成的,因此我们期望这两个特征与Target之间存在一定的相关性。通过计算皮尔逊相关系数,我们可以量化这种相关性。

特征重要性评估

特征重要性评估帮助我们确定哪些特征对模型的预测能力贡献最大。在逻辑回归中,系数的绝对值可以作为特征重要性的指标。以下是一个使用Python和Scikit-learn库评估特征重要性的例子:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 使用前例中的数据
X = df[['Feature1', 'Feature2']]
y = df['Target']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 获取特征系数
importances = abs(model.coef_[0])

# 打印特征重要性
for feature, importance in zip(X.columns, importances):
    print(f'{feature}的重要性: {importance}')

在这个例子中,我们使用逻辑回归模型训练数据,并通过模型的系数来评估特征的重要性。系数的绝对值越大,特征的重要性越高。

特征组合与衍生

特征组合与衍生是通过创建新特征来增强模型预测能力的过程。例如,我们可以创建特征之间的乘积或比率,以捕捉非线性关系。以下是一个使用Python创建特征组合的例子:

# 创建特征组合
df['Feature3'] = df['Feature1'] * df['Feature2']

# 使用新特征训练模型
X = df[['Feature1', 'Feature2', 'Feature3']]
y = df['Target']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 打印模型系数
print('模型系数:', model.coef_[0])

在这个例子中,我们创建了一个新特征Feature3,它是Feature1Feature2的乘积。然后,我们使用这个新特征以及原始特征来训练逻辑回归模型,以观察新特征是否能提高模型的性能。

特征选择方法

特征选择方法用于减少模型的复杂性,提高预测性能,同时避免过拟合。常见的特征选择方法包括递归特征消除(RFE)和基于模型的特征选择。以下是一个使用Python和Scikit-learn库进行特征选择的例子:

from sklearn.feature_selection import RFE

# 使用前例中的数据
X = df[['Feature1', 'Feature2', 'Feature3']]
y = df['Target']

# 使用RFE进行特征选择
model = LogisticRegression()
rfe = RFE(model, n_features_to_select=2)
fit = rfe.fit(X, y)

# 打印被选择的特征
print('被选择的特征:', X.columns[fit.support_])

在这个例子中,我们使用递归特征消除(RFE)方法来选择特征。我们指定模型保留两个最重要的特征,然后通过fit.support_属性来确定哪些特征被保留。

通过以上步骤,我们可以有效地进行特征选择与工程,从而提高逻辑回归模型的性能和预测准确性。在实际应用中,这些步骤可能需要根据具体数据集和问题进行调整和优化。

模型训练与评估

逻辑回归模型的训练

逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计学方法,尽管其名称中包含“回归”一词,但实际上它是一种分类算法。逻辑回归的核心在于使用Sigmoid函数将线性回归的输出转换为概率值,从而实现二分类或多分类任务。

示例代码

假设我们有一组数据,其中包含两个特征X1X2,以及一个二分类目标变量y。我们将使用Python的scikit-learn库来训练一个逻辑回归模型。

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 生成示例数据
X = np.random.rand(100, 2)
y = np.random.randint(2, size=100)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"模型准确率: {accuracy}")

代码解释

  1. 数据生成:使用numpy生成随机数据。
  2. 数据划分:使用train_test_split函数将数据划分为训练集和测试集。
  3. 模型创建:实例化LogisticRegression类。
  4. 模型训练:调用fit方法,传入训练数据和标签。
  5. 模型预测:使用predict方法对测试集进行预测。
  6. 准确率计算:使用accuracy_score函数比较预测结果和真实标签,计算准确率。

模型评估指标

模型评估是机器学习中一个关键步骤,用于衡量模型的性能。对于逻辑回归这样的分类模型,常见的评估指标包括准确率、精确率、召回率、F1分数和AUC-ROC曲线。

示例代码

我们将使用scikit-learn库中的classification_reportroc_auc_score函数来计算模型的评估指标。

from sklearn.metrics import classification_report, roc_auc_score

# 计算并打印分类报告
print(classification_report(y_test, y_pred))

# 计算AUC-ROC
auc_roc = roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])
print(f"AUC-ROC: {auc_roc}")

代码解释

  1. 分类报告classification_report函数提供了精确率、召回率和F1分数的详细报告。
  2. AUC-ROC计算roc_auc_score函数用于计算AUC-ROC值,其中predict_proba方法返回预测的概率值。

交叉验证

交叉验证是一种评估模型性能的统计学方法,通过将数据集划分为多个子集,然后在不同的子集上重复训练和测试模型,以减少评估结果的方差。scikit-learn提供了cross_val_score函数来实现交叉验证。

示例代码

我们将使用cross_val_score函数对逻辑回归模型进行交叉验证。

from sklearn.model_selection import cross_val_score

# 使用交叉验证计算准确率
cv_scores = cross_val_score(model, X, y, cv=5)
print(f"交叉验证准确率: {np.mean(cv_scores)}")

代码解释

  1. 交叉验证cross_val_score函数接受模型、数据、标签和交叉验证的次数(cv)作为参数,返回每次验证的准确率。

模型调优

模型调优是通过调整模型的参数来优化模型性能的过程。对于逻辑回归,常见的调优参数包括正则化类型(penalty)、正则化强度(C)和求解器(solver)。

示例代码

我们将通过网格搜索(Grid Search)来调优逻辑回归模型的参数。

from sklearn.model_selection import GridSearchCV

# 定义参数网格
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
              'penalty': ['l1', 'l2'],
              'solver': ['liblinear', 'saga']}

# 创建网格搜索对象
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5, scoring='accuracy')

# 执行网格搜索
grid_search.fit(X_train, y_train)

# 输出最佳参数
print(f"最佳参数: {grid_search.best_params_}")

# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)

# 计算最佳模型的准确率
accuracy_best = accuracy_score(y_test, y_pred_best)
print(f"最佳模型准确率: {accuracy_best}")

代码解释

  1. 参数网格定义param_grid字典定义了要搜索的参数范围。
  2. 网格搜索创建GridSearchCV函数接受模型、参数网格、交叉验证次数和评分标准作为参数。
  3. 执行网格搜索:调用fit方法在训练数据上执行网格搜索。
  4. 最佳参数输出best_params_属性返回最佳参数组合。
  5. 最佳模型预测:使用best_estimator_属性获取最佳模型,并对测试集进行预测。
  6. 最佳模型准确率计算:计算并输出使用最佳参数的模型在测试集上的准确率。

以上代码示例和解释详细介绍了逻辑回归模型的训练、评估、交叉验证和调优过程,为理解和应用逻辑回归提供了实践指导。

逻辑回归在实际案例中的应用

案例分析:信用评分

1. 数据预处理

在进行信用评分的逻辑回归分析前,数据预处理是至关重要的步骤。这包括数据清洗、缺失值处理、异常值检测和数据转换。

数据清洗

数据清洗涉及去除或修正数据集中的错误或不一致的信息。例如,检查数据集中是否存在重复记录,或数据类型是否正确。

缺失值处理

对于缺失值,可以采用多种策略,如删除含有缺失值的记录、使用平均值或中位数填充、或使用预测模型填充缺失值。

异常值检测

异常值可能对模型的准确性产生负面影响。可以使用统计方法(如Z-score或IQR)来识别并处理异常值。

数据转换

数据转换包括标准化、归一化和特征编码。例如,将分类变量转换为虚拟变量(one-hot encoding)。

2. 特征选择

特征选择是识别对模型预测能力有贡献的特征的过程。可以使用相关性分析、递归特征消除(RFE)或基于模型的特征选择方法。

3. 模型训练与评估

使用逻辑回归模型对处理后的数据进行训练,并通过交叉验证、AUC-ROC曲线等方法评估模型性能。

4. 模型优化

根据评估结果,调整模型参数,如正则化项,以优化模型性能。

5. 模型应用

将优化后的模型应用于新的数据集,进行信用评分预测。

示例代码:特征编码
import pandas as pd
from sklearn.preprocessing import OneHotEncoder

# 假设df是包含分类特征的DataFrame
df = pd.DataFrame({
    'Gender': ['Male', 'Female', 'Male', 'Female'],
    'Education': ['High School', 'College', 'College', 'High School']
})

# 将分类特征转换为虚拟变量
encoder = OneHotEncoder(sparse=False)
encoded_features = encoder.fit_transform(df[['Gender', 'Education']])

# 将编码后的特征转换回DataFrame
encoded_df = pd.DataFrame(encoded_features, columns=encoder.get_feature_names_out(['Gender', 'Education']))
print(encoded_df)

6. 结果解释

解释模型预测结果,包括预测概率和特征重要性,以帮助决策者理解模型的预测逻辑。

案例分析:疾病预测

1. 数据预处理

与信用评分案例类似,疾病预测的数据预处理包括数据清洗、缺失值处理、异常值检测和数据转换。

2. 特征工程

特征工程在疾病预测中尤为重要,可能包括创建新的特征(如BMI计算)、特征选择和特征转换。

示例代码:BMI计算
# 假设df是包含身高和体重信息的DataFrame
df = pd.DataFrame({
    'Height': [170, 165, 180, 175],
    'Weight': [70, 60, 80, 75]
})

# 计算BMI
df['BMI'] = df['Weight'] / ((df['Height'] / 100) ** 2)
print(df)

3. 模型训练与评估

使用逻辑回归模型训练数据,并通过混淆矩阵、精确率、召回率等指标评估模型。

4. 模型优化

通过调整模型参数或使用集成学习方法,如Bagging或Boosting,来优化模型性能。

5. 模型应用

将优化后的模型应用于新的患者数据,预测疾病风险。

6. 结果解释

解释模型预测结果,包括疾病预测的概率和影响预测的主要特征,以辅助医疗决策。

通过以上步骤,逻辑回归模型可以有效地应用于信用评分和疾病预测等实际案例中,帮助决策者基于数据做出更明智的决策。

高级主题与技巧

正则化在逻辑回归中的应用

正则化是机器学习中一种防止模型过拟合的技术。在逻辑回归中,正则化通过在损失函数中添加一个惩罚项来限制模型参数的大小,从而避免模型对训练数据的过度适应。这有助于提高模型的泛化能力,使其在未见过的数据上表现更好。

L1正则化 (Lasso)

L1正则化通过添加参数绝对值的和作为惩罚项,可以将一些不重要的特征的权重压缩到0,从而实现特征选择。

代码示例
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer

# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 应用L1正则化的逻辑回归
clf = LogisticRegression(penalty='l1', solver='liblinear', C=1.0)
clf.fit(X_train, y_train)

# 输出特征权重
feature_weights = clf.coef_[0]
non_zero_weights = np.sum(feature_weights != 0)
print(f"非零特征权重数量: {non_zero_weights}")

# 预测测试集
predictions = clf.predict(X_test)

L2正则化 (Ridge)

L2正则化通过添加参数平方值的和作为惩罚项,可以防止参数变得过大,但不会将参数压缩到0,因此不会进行特征选择。

代码示例
# 使用L2正则化的逻辑回归
clf = LogisticRegression(penalty='l2', C=1.0)
clf.fit(X_train, y_train)

# 输出特征权重
feature_weights = clf.coef_[0]
print(f"特征权重: {feature_weights}")

# 预测测试集
predictions = clf.predict(X_test)

处理不平衡数据集

在分类问题中,当目标变量的类别分布不均时,我们称数据集为不平衡数据集。这可能导致模型偏向于多数类,从而降低对少数类的预测性能。处理不平衡数据集的方法包括过采样、欠采样和使用不同的评估指标。

过采样

过采样是通过复制少数类的样本,增加其在数据集中的比例,从而平衡类别分布。

代码示例
from imblearn.over_sampling import SMOTE

# 创建SMOTE对象
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

# 使用过采样后的数据训练模型
clf = LogisticRegression()
clf.fit(X_resampled, y_resampled)

# 预测测试集
predictions = clf.predict(X_test)

欠采样

欠采样是通过从多数类中随机删除样本,减少其在数据集中的比例,从而平衡类别分布。

代码示例
from imblearn.under_sampling import RandomUnderSampler

# 创建RandomUnderSampler对象
rus = RandomUnderSampler(random_state=42)
X_resampled, y_resampled = rus.fit_resample(X_train, y_train)

# 使用欠采样后的数据训练模型
clf = LogisticRegression()
clf.fit(X_resampled, y_resampled)

# 预测测试集
predictions = clf.predict(X_test)

特征工程的自动化工具

特征工程是机器学习中一个关键步骤,它涉及选择、创建和转换特征以提高模型性能。自动化特征工程工具可以简化这一过程,例如使用Featuretools库进行自动特征生成。

Featuretools库

Featuretools是一个用于自动特征工程的Python库,它基于实体集(EntitySet)的概念,可以自动创建基于时间序列和关系数据的特征。

代码示例
import featuretools as ft
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 创建实体集
es = ft.EntitySet(id='customer_data')
es = es.entity_from_dataframe(entity_id='customers', dataframe=df_customers, index='customer_id')
es = es.entity_from_dataframe(entity_id='transactions', dataframe=df_transactions, index='transaction_id')
es = es.add_relationship(ft.Relationship(es['customers']['customer_id'], es['transactions']['customer_id']))

# 自动特征生成
feature_matrix, feature_defs = ft.dfs(entityset=es, target_entity='customers')

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(feature_matrix, df_customers['churn'], test_size=0.2, random_state=42)

# 训练逻辑回归模型
clf = LogisticRegression()
clf.fit(X_train, y_train)

# 预测并评估模型
predictions = clf.predict(X_test)
print(f"准确率: {accuracy_score(y_test, predictions)}")

通过上述高级主题与技巧的介绍,我们可以看到正则化、处理不平衡数据集以及自动化特征工程工具如何在逻辑回归模型中发挥作用,提高模型的性能和稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值