简单~立方和与平方和的平方~数学等式推导

if判断括号里的条件成立时,执行一次就结束了;

while判断括号里的条件成立时,重复执行,直到括号里的条件不满足;

def nicomachus_proof(n): """数学归纳法核心步骤验证 功能:验证1³+2³+...+n³ = (n(n+1)/2)²的数学归纳法步骤""" # === 基例验证(n=1) === print("=== 基例验证(n=1) ===") # 计算左边:1的立方 base_left = 1 ** 3 # 1³ = 1 # 计算右边:三角数公式(n=1时的平方) base_right = (1 * 2 // 2) ** 2 # (1×2/2)² = 1² = 1 # 输出验证结果 print(f"1³ = {base_left}, 三角数平方 = {base_right} → 验证通过? {base_left == base_right}") # 如果输入n=1,直接返回基例验证结果 if n == 1: return True # 基例成立时直接终止 # === 归纳步骤(n-1假设) === print("\n=== 归纳步骤(n-1假设) ===") # 假设前n-1项成立时的数学归纳法的假设条件) sum_prev = ((n - 1) * n // 2) ** 2 # ∑i³ = [(n-1)n/2]² (i=1到n-1) # 当前第n项的立方值 current_term = n ** 3 # 第n项 = n³ # 计算左边总:假设的 + 当前项 total_left = sum_prev + current_term # 左边实际计算结果 # 计算右边目标表达式:三角数公式的平方 total_right = (n * (n + 1) // 2) ** 2 # [n(n+1)/2]² # === 输出关键计算步骤 === print(f"假设前{n - 1}项成立 → 前{n}项 = ({n - 1}*{n}/2)² + {n}³") # 数学表达式展示 print(f"计算过程:{sum_prev} + {current_term} = {total_left}") # 数值计算过程 print(f"目标表达式:({n}({n}+1)/2)² = {total_right}") # 目标公式结果 print(f"验证结果 → 相等? {total_left == total_right}") # 最终验证 # 返回验证结果:左边计算值是否等于右边目标值 return total_left == total_right # 使用示例 -------------------------------------------------- n = 10 # 测试输入值 print("\n验证结果:", nicomachus_proof(n)) # 执行验证函数 print(f"定理结论:1³ + 2³ + ... + {n}³ = ({n}({n}+1)/2)²") # 输出定理形式
03-19
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值