hfut自然语言处理-test1-语料库的收集与整理

目录

 

一、研究背景

二、模型方法

1. N-gram模型的概念

2.统计生成N-gram词典的技术

三、系统设计


 

一、研究背景

 文本分析和N-gram统计是自然语言处理(NLP)领域的关键任务,在理解和处理文本数据时发挥着重要作用。NLP致力于使计算机能够理解和处理人类语言,而文本分析和N-gram统计是实现这一目标的基础性技术之一。

 在这个实验中,我们专注于中文文本数据集的分析和N-gram统计。中文是一种复杂的语言,具有丰富的语法和词汇结构,因此对其进行深入分析对于揭示语言模式和结构非常重要。N-gram分析允许我们查看不同长度(通常为N=1和N=2)的词语组合在文本中的出现频率,这有助于我们识别重要的短语和词汇。

二、模型方法

1. N-gram模型的概念

N-gram定义: N-gram是一个连续N个词语或字符的序列。在N-gram模型中,N表示这个序列的长度,通常是1、2、3或更多。

语言模型: N-gram模型是一种用于建模自然语言的概率语言模型。它用来估计给定文本中下一个词或字符出现的概率,基于前面N-1个词或字符。这有助于理解语言中的上下文和语法。

条件概率: N-gram模型基于条件概率&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值