pychram中用jupyter

一、准备工作
1. 安装Anaconda、pycharm

(也可以使用独立安装和使用,无需依赖 Anaconda

用管理员权限打开cmd

pip install jupyter notebook
2. Jupyter官网

https://jupyter.org/

3. Jupyter常用命令
Jupyter
usage: jupyter [-h] [--version] [--config-dir] [--data-dir] [--runtime-dir] [--paths] [--json] [--debug] [subcommand]

Jupyter: Interactive Computing

positional arguments:
subcommand     the subcommand to launch

optional arguments:
-h, --help     show this help message and exit
--version      show the versions of core jupyter packages and exit
--config-dir   show Jupyter config dir
--data-dir     show Jupyter data dir
--runtime-dir  show Jupyter runtime dir
--paths        show all Jupyter paths. Add --json for machine-readable format.
--json         output paths as machine-readable json
--debug        output debug information about paths

Available subcommands: bundlerextension console dejavu events execute kernel kernelspec lab labextension labhub
migrate nbclassic nbconvert nbextension notebook qtconsole run script server serverextension troubleshoot trust

Please specify a subcommand or one of the optional arguments.

二、PyCharm配置 Jupyter Notebook

1. 启动Jupyter Notebook 服务器

终端输入:

jupyter notebook
2. 复制URL 地址

如图,终端中显示 Jupyter Notebook 服务器的 URL 地址(通常是 http://localhost:8888/),复制如下任一链接(包括token部分)

3. 配置Jupyter服务器
  • 打开项目:

  • 填入上述的链接(包括访问令牌 token)

访问令牌 token注意事项

每次Jupyter提供的token不一样,若重新启动Jupyter需重新填充token

4. Jupyter服务器设置密码(避免每次输入token)

终端输入:

jupyter notebook password

注意:输入密码不显示

三、测试 Jupyter Notebook
1. 新建Jupyter Notebook文件

2. 运行单元

<think>好的,我现在需要帮助用户在PyCharm中配置和使用GPU进行深度学习模型训练。根据用户提供的引用内容,我需要整合相关信息并给出清晰的步骤。首先,我应该确保所有步骤都正确,并且符合用户的环境需求。 首先,用户提到了Anaconda、PyCharm、PyTorch、CUDA和cuDNN。我需要先检查这些组件之间的关系。通常,配置GPU加速需要安装支持CUDA的PyTorch版本,这需要正确安装NVIDIA驱动、CUDA工具包和cuDNN库。然后,在Anaconda环境中安装PyTorch,并在PyCharm中设置该环境。 接下来,用户可能遇到的问题包括环境配置错误、PyTorch无法识别GPU,或者训练时没有使用GPU加速。我需要一步步引导用户完成安装和验证过程,确保每个步骤都正确无误。 可能需要分步骤说明:安装NVIDIA驱动,确认CUDA可用,创建Anaconda环境,安装PyTorch GPU版本,配置PyCharm使用该环境,最后编写测试代码验证GPU是否正常工作。同时,需要提醒用户注意版本兼容性,比如PyTorch、CUDA和cuDNN的版本对应关系。 此外,用户可能需要示例代码来测试GPU训练,比如一个简单的张量运算或模型训练代码,以确认GPU确实被使用。还要强调在代码中如何将模型和数据转移到GPU上,例如使用`.to('cuda')`方法。 最后,生成相关问题,帮助用户进一步解决可能遇到的其他问题,比如性能优化、环境故障排除等。</think>以下是在PyCharm中配置和使用GPU进行深度学习模型训练的详细步骤: ### 一、环境准备 1. **安装NVIDIA驱动** 通过`nvidia-smi`命令验证驱动安装,确保显示的CUDA版本≥11.3(例如显示`CUDA Version: 12.2`)[^2] 2. **安装CUDA工具包** 根据PyTorch官网要求的版本选择CUDA,例如: ```bash conda install cudatoolkit=11.8 -c nvidia ``` 3. **创建Anaconda虚拟环境** ```bash conda create -n pytorch_gpu python=3.9 conda activate pytorch_gpu ``` ### 二、安装PyTorch GPU版 使用官方推荐的安装命令(以CUDA 11.8为例): ```bash conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 验证安装: ```python import torch print(torch.cuda.is_available()) # 应输出True print(torch.rand(5).cuda()) # 应显示GPU张量 ``` ### 三、PyCharm环境配置 1. 打开PyCharm → 文件 → 设置 → 项目 → Python解释器 2. 点击齿轮图标 → 添加 → 选择Conda环境 → 现有环境 3. 定位到`Anaconda安装路径/envs/pytorch_gpu/python.exe` ### 四、GPU加速训练实现 ```python import torch # 1. 指定设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 2. 模型迁移到GPU model = YourModel().to(device) # 3. 数据迁移到GPU for data, target in dataloader: data, target = data.to(device), target.to(device) # 4. 验证GPU使用(监控GPU利用率) nvidia-smi -l 1 # 在终端查看实时显存占用 ``` ### 五、常见问题排查 - **GPU不可见**:检查驱动版本与CUDA版本匹配性 - **显存不足**:减小`batch_size`或使用梯度累积 - **性能优化**:启用`cudnn.benchmark = True`加速卷积运算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值