如何训练自己的数据集之—火灾应急救援的数据集呢?森林防火,应急救援等方向的学术研究,落地应用 ——智慧化无人机,直升机等航拍视角下火灾应急救援检测数据集,标注火,人,车辆这三个要素

火灾应急救援——智慧化无人机,直升机等航拍视角下火灾应急救援检测数据集,数据分别标注了火,人,车辆这三个要素内容,29810张高清航拍影像,共31GB,适合森林防火,应急救援等方向的学术研究,落地应用   ——智慧化无人机,直升机等航拍视角下火灾应急救援检测数据集,数据分别标注了火,人,车辆这三个要素内容,29810张高清航拍影像,共31GB,适合森林防火,应急救援等方向的学术研究,落地应用

  • 火灾应急救援检测数据集
  • 规模:共29,810张高清航拍影像,数据量约31GB
  • 检测要素:火源、人员、车辆
  • 应用场景:适合森林防火、应急救援等方向的学术研究及实际应用
  • 拍摄视角:无人机、直升机等航拍视角

数据集特点

  • 高清影像:所有图像均为高清航拍影像,适合用于精确的目标检测。
  • 详细标注:每张图像都标注了火源、人员、车辆的位置,可以用于训练模型来识别这些关键要素。
  • 多样性:涵盖不同时间、天气条件下的真实火灾场景,适用于多种环境下的应用。
  • 广泛适用性:支持多种深度学习框架,适用于目标检测及定位任务。

数据集统计

目标类别图像张数数据量
火源
人员
车辆
总计29,81031GB

数据集结构

FireEmergencyRescueDataset/
├── images/  # 图像文件
│   ├── image_00001.jpg
│   ├── image_00002.jpg
│   └── ...
├── annotations/  # 目标检测标注
│   ├── image_00001.txt
│   ├── image_00002.txt
│   └── ...
└── dataset_info.txt  # 数据集描述文件

标注格式示例

每张图像对应的文本文件表示一个物体的边界框和类别:

YOLO格

class_id cx cy w h
  • class_id:类别ID(从0开始编号)
    • 0: 火源
    • 1: 人员
    • 2: 车辆
  • cx:目标框中心点x坐标 / 图像宽度。
  • cy:目标框中心点y坐标 / 图像高度。
  • w:目标框宽度 / 图像宽度。
  • h:目标框高度 / 图像高度。
0 0.453646 0.623148 0.234375 0.461111
1 0.321021 0.456789 0.123456 0.345678
2 0.567890 0.789012 0.156789 0.234567

使用该数据集进行模型训练

1. 数据预处理与加载

首先,我们需要加载数据并将其转换为适合YOLOv5等模型使用的格式。假设你已经安装了PyTorch和YOLOv5。

import os
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms

class FireEmergencyRescueDataset(Dataset):
    def __init__(self, image_dir, label_dir, transform=None):
        self.image_dir = image_dir
        self.label_dir = label_dir
        self.transform = transform
        self.image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]

    def __len__(self):
        return len(self.image_files)

    def __getitem__(self, idx):
        img_name = self.image_files[idx]
        img_path = os.path.join(self.image_dir, img_name)
        label_path = os.path.join(self.label_dir, img_name.replace('.jpg', '.txt'))

        # 加载图像
        image = Image.open(img_path).convert('RGB')
        if self.transform:
            image = self.transform(image)

        # 加载标注
        with open(label_path, 'r') as f:
            lines = f.readlines()
        
        boxes = []
        labels = []
        for line in lines:
            class_id, cx, cy, w, h = map(float, line.strip().split())
            boxes.append([cx, cy, w, h])
            labels.append(int(class_id))

        boxes = torch.tensor(boxes, dtype=torch.float32)
        labels = torch.tensor(labels, dtype=torch.int64)

        return image, boxes, labels

# 数据增强
transform = transforms.Compose([
    transforms.Resize((640, 640)),
    transforms.ToTensor(),
])

# 创建数据集
train_dataset = FireEmergencyRescueDataset(image_dir='FireEmergencyRescueDataset/images/', label_dir='FireEmergencyRescueDataset/annotations/', transform=transform)

# 划分训练集和验证集
train_size = int(0.8 * len(train_dataset))
val_size = len(train_dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(train_dataset, [train_size, val_size])

train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False, num_workers=4)

2. 构建模型

我们可以使用YOLOv5模型进行目标检测任务。假设你已经克隆了YOLOv5仓库,并按照其文档进行了环境设置。

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

创建数据配置文件 data/fire_emergency_rescue.yaml

train: path/to/FireEmergencyRescueDataset/images/
val: path/to/FireEmergencyRescueDataset/images/
test: path/to/FireEmergencyRescueDataset/images/

nc: 3  # 类别数
names: ['火源', '人员', '车辆']

3. 训练模型

使用YOLOv5进行训练。

python train.py --img 640 --batch 16 --epochs 100 --data data/fire_emergency_rescue.yaml --weights yolov5s.pt --cache

4. 评估模型

在验证集上评估模型性能。

python val.py --img 640 --batch 16 --data data/fire_emergency_rescue.yaml --weights runs/train/exp/weights/best.pt --task test

5. 推理

使用训练好的模型进行推理。

python detect.py --source path/to/test/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.5

实验报告

实验报告应包括以下内容:

  1. 项目简介:简要描述项目的背景、目标和意义。
  2. 数据集介绍:详细介绍数据集的来源、规模、标注格式等。
  3. 模型选择与配置:说明选择的模型及其配置参数。
  4. 训练过程:记录训练过程中的损失变化、学习率调整等。
  5. 评估结果:展示模型在验证集上的性能指标(如mAP、准确率)。
  6. 可视化结果:提供一些典型样本的检测结果可视化图。
  7. 结论与讨论:总结实验结果,讨论可能的改进方向。
  8. 附录:包含代码片段、图表等补充材料。

依赖库

确保安装了以下依赖库:

pip install torch torchvision
pip install -r yolov5/requirements.txt

总结

这个智慧火灾应急救援检测数据集提供了丰富的标注数据,非常适合用于训练和评估目标检测模型。通过YOLOv5框架,可以方便地构建和训练高性能的目标检测模型。实验报告可以帮助你更好地理解和分析模型的表现,并为进一步的研究提供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值