旋转机械故障 数据集 11G资料
泵、齿轮箱、电机、流量、液压系统、轴承(西储大学、辛辛那提大学、FEMTO、MOSFET)、PHM08挑战数据集、我闪发动机降级模拟数据集、铣床等
旋转机械故障数据集介绍
数据集概述
本数据集包含多个来源的旋转机械故障数据,涉及多种设备类型,如泵、齿轮箱、电机、流量测量系统、液压系统、轴承等。这些数据集来自多个知名机构和竞赛,包括西储大学、辛辛那提大学、FEMTO研究所、MOSFET老化数据集、PHM08挑战赛数据集、涡扇发动机降级模拟数据集以及铣床数据集等。以下是各个数据集的详细介绍:
数据集列表
-
西储大学(Case Western Reserve University)轴承数据集
- 描述:该数据集包含多个不同状态下的滚动轴承振动信号,用于滚动轴承的故障诊断研究。
- 用途:滚动轴承故障诊断。
- 大小:约1GB。
- 文件:
CWRU_Bearing_Dataset.zip
。
-
辛辛那提大学智能维护系统中心(University of Cincinnati's IMS Center)轴承数据集
- 描述:包含多种工况下的滚动轴承振动信号,适用于故障诊断研究。
- 用途:滚动轴承故障诊断。
- 大小:约2GB。
- 文件:
IMS_Bearing_Dataset.7z
。
-
FEMTO研究所轴承数据集
- 描述:提供了精确控制条件下的滚动轴承测试数据,适用于精密机械的故障诊断研究。
- 用途:滚动轴承故障诊断。
- 大小:约1GB。
- 文件:
FEMTO_Bearing_Dataset.zip
。
-
MOSFET热过载老化数据集
- 描述:记录了MOSFET器件在热过载条件下的老化过程,适用于电子元器件寿命预测研究。
- 用途:电子元器件寿命预测。
- 大小:约1GB。
- 文件:
MOSFET_Thermal_Overeating_Aging_v0.zip
。
-
PHM08挑战数据集
- 描述:来自2008年PHM会议的挑战赛数据集,包含多种机械系统的故障数据。
- 用途:机械系统故障诊断。
- 大小:约2GB。
- 文件:
PHM08_Challenge_Data.zip
。
-
涡扇发动机降级模拟数据集(CMAPSSData)
- 描述:用于模拟涡扇发动机健康状态下降过程的数据集,适用于剩余使用寿命预测研究。
- 用途:发动机健康状态监测。
- 大小:约2GB。
- 文件:
CMAPSSData.zip
。
-
空气质量数据集(AirQualityUCI.zip)
- 描述:虽然主要关注空气质量监测,但可用于环境监测系统的故障诊断研究。
- 用途:环境监测系统故障诊断。
- 大小:约100MB。
- 文件:
AirQualityUCI.zip
。
-
铣床数据集
- 描述:包含铣床运行过程中产生的振动信号,适用于铣床故障诊断研究。
- 用途:铣床故障诊断。
- 大小:约1GB。
- 文件:
MillingMachine.zip
。
-
液压系统数据
- 描述:液压系统运行期间的压力、温度和其他传感器数据,适用于液压系统的故障诊断。
- 用途:液压系统故障诊断。
- 大小:约1GB。
- 文件:
HydraulicSystemData.zip
。
-
泵数据
- 描述:泵在不同工况下的振动信号,适用于泵的故障诊断。
- 用途:泵故障诊断。
- 大小:约1GB。
- 文件:
PumpData.zip
。
-
流量数据
- 描述:各种流量测量设备在不同条件下的数据记录,适用于流量测量设备的故障诊断。
- 用途:流量测量设备故障诊断。
- 大小:约1GB。
- 文件:
FlowData.zip
。
数据集结构示例 (data/
)
data/
├── CWRU_Bearing_Dataset.zip
├── IMS_Bearing_Dataset.7z
├── FEMTO_Bearing_Dataset.zip
├── MOSFET_Thermal_Overeating_Aging_v0.zip
├── PHM08_Challenge_Data.zip
├── CMAPSSData.zip
├── AirQualityUCI.zip
├── MillingMachine.zip
├── HydraulicSystemData.zip
├── PumpData.zip
├── FlowData.zip
└── README.md # 数据集说明
数据集使用说明
- 解压数据集:首先解压各个数据集压缩包。
- 数据预处理:根据具体的数据集文档进行数据预处理,如信号去噪、数据标准化等。
- 模型训练与测试:使用适当的机器学习或深度学习模型对数据进行训练,并在测试集上评估模型性能。
- 性能评估:计算各项性能指标,如准确率、召回率、F1分数等,并绘制混淆矩阵。
示例代码
数据读取示例代码
import pandas as pd
import numpy as np
import zipfile
import os
def load_data_from_zip(file_path, file_name):
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall('temp_data')
df = pd.read_csv(os.path.join('temp_data', file_name))
return df
# 使用示例
data = load_data_from_zip('data/CWRU_Bearing_Dataset.zip', 'bearing_data.csv')
print(data.head())
数据预处理示例代码
from sklearn.preprocessing import StandardScaler
def preprocess_data(df):
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
return scaled_data
# 使用示例
processed_data = preprocess_data(data)
print(processed_data[:5])
模型训练示例代码
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
def train_and_evaluate_model(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print(classification_report(y_test, predictions))
print(confusion_matrix(y_test, predictions))
# 使用示例
train_and_evaluate_model(processed_data, data['label'])
项目目录结构
RotationMechanicalFaultDetection/
├── data/
│ ├── CWRU_Bearing_Dataset.zip
│ ├── IMS_Bearing_Dataset.7z
│ ├── FEMTO_Bearing_Dataset.zip
│ ├── MOSFET_Thermal_Overeating_Aging_v0.zip
│ ├── PHM08_Challenge_Data.zip
│ ├── CMAPSSData.zip
│ ├── AirQualityUCI.zip
│ ├── MillingMachine.zip
│ ├── HydraulicSystemData.zip
│ ├── PumpData.zip
│ ├── FlowData.zip
├── src/
│ ├── main.py # 主程序入口
│ ├── data_processing.py # 数据预处理脚本
│ ├── model_training.py # 模型训练脚本
└── README.md # 项目说明
项目运行
确保安装了必要的依赖库:
pip install pandas numpy scikit-learn
然后运行主程序:
python src/main.py
学习资源
项目中的代码包含了详细的注释,帮助初学者理解各个部分的功能和作用。同时,提供的数据集可以让用户快速上手,了解如何使用机器学习和深度学习模型进行旋转机械故障诊断。
总结
这个旋转机械故障数据集集合了多种类型的设备数据,适用于多种机械故障诊断任务。通过本项目,你可以深入学习如何处理和分析这些数据,并将其应用于实际的故障诊断中。对于初学者来说,这是一个很好的学习平台,可以深入了解旋转机械故障诊断技术及其在实际应用中的实现。