旋转机械故障数据集资料泵数据集、齿轮箱数据集、电机数据集、流量数据集、液压系统数据集、轴承(西储大学、辛辛那提大学、)、PHM08挑战数据集,我闪发动机降级模拟数据集、铣床等 共11GB 旋转机械数据

旋转机械故障 数据集 11G资料


泵、齿轮箱、电机、流量、液压系统、轴承(西储大学、辛辛那提大学、FEMTO、MOSFET)、PHM08挑战数据集、我闪发动机降级模拟数据集、铣床等

旋转机械故障数据集介绍

数据集概述

本数据集包含多个来源的旋转机械故障数据,涉及多种设备类型,如泵、齿轮箱、电机、流量测量系统、液压系统、轴承等。这些数据集来自多个知名机构和竞赛,包括西储大学、辛辛那提大学、FEMTO研究所、MOSFET老化数据集、PHM08挑战赛数据集、涡扇发动机降级模拟数据集以及铣床数据集等。以下是各个数据集的详细介绍:

数据集列表
  1. 西储大学(Case Western Reserve University)轴承数据集

    • 描述:该数据集包含多个不同状态下的滚动轴承振动信号,用于滚动轴承的故障诊断研究。
    • 用途:滚动轴承故障诊断。
    • 大小:约1GB。
    • 文件CWRU_Bearing_Dataset.zip
  2. 辛辛那提大学智能维护系统中心(University of Cincinnati's IMS Center)轴承数据集

    • 描述:包含多种工况下的滚动轴承振动信号,适用于故障诊断研究。
    • 用途:滚动轴承故障诊断。
    • 大小:约2GB。
    • 文件IMS_Bearing_Dataset.7z
  3. FEMTO研究所轴承数据集

    • 描述:提供了精确控制条件下的滚动轴承测试数据,适用于精密机械的故障诊断研究。
    • 用途:滚动轴承故障诊断。
    • 大小:约1GB。
    • 文件FEMTO_Bearing_Dataset.zip
  4. MOSFET热过载老化数据集

    • 描述:记录了MOSFET器件在热过载条件下的老化过程,适用于电子元器件寿命预测研究。
    • 用途:电子元器件寿命预测。
    • 大小:约1GB。
    • 文件MOSFET_Thermal_Overeating_Aging_v0.zip
  5. PHM08挑战数据集

    • 描述:来自2008年PHM会议的挑战赛数据集,包含多种机械系统的故障数据。
    • 用途:机械系统故障诊断。
    • 大小:约2GB。
    • 文件PHM08_Challenge_Data.zip
  6. 涡扇发动机降级模拟数据集(CMAPSSData)

    • 描述:用于模拟涡扇发动机健康状态下降过程的数据集,适用于剩余使用寿命预测研究。
    • 用途:发动机健康状态监测。
    • 大小:约2GB。
    • 文件CMAPSSData.zip
  7. 空气质量数据集(AirQualityUCI.zip)

    • 描述:虽然主要关注空气质量监测,但可用于环境监测系统的故障诊断研究。
    • 用途:环境监测系统故障诊断。
    • 大小:约100MB。
    • 文件AirQualityUCI.zip
  8. 铣床数据集

    • 描述:包含铣床运行过程中产生的振动信号,适用于铣床故障诊断研究。
    • 用途:铣床故障诊断。
    • 大小:约1GB。
    • 文件MillingMachine.zip
  9. 液压系统数据

    • 描述:液压系统运行期间的压力、温度和其他传感器数据,适用于液压系统的故障诊断。
    • 用途:液压系统故障诊断。
    • 大小:约1GB。
    • 文件HydraulicSystemData.zip
  10. 泵数据

    • 描述:泵在不同工况下的振动信号,适用于泵的故障诊断。
    • 用途:泵故障诊断。
    • 大小:约1GB。
    • 文件PumpData.zip
  11. 流量数据

    • 描述:各种流量测量设备在不同条件下的数据记录,适用于流量测量设备的故障诊断。
    • 用途:流量测量设备故障诊断。
    • 大小:约1GB。
    • 文件FlowData.zip
数据集结构示例 (data/)
data/
├── CWRU_Bearing_Dataset.zip
├── IMS_Bearing_Dataset.7z
├── FEMTO_Bearing_Dataset.zip
├── MOSFET_Thermal_Overeating_Aging_v0.zip
├── PHM08_Challenge_Data.zip
├── CMAPSSData.zip
├── AirQualityUCI.zip
├── MillingMachine.zip
├── HydraulicSystemData.zip
├── PumpData.zip
├── FlowData.zip
└── README.md  # 数据集说明
数据集使用说明
  • 解压数据集:首先解压各个数据集压缩包。
  • 数据预处理:根据具体的数据集文档进行数据预处理,如信号去噪、数据标准化等。
  • 模型训练与测试:使用适当的机器学习或深度学习模型对数据进行训练,并在测试集上评估模型性能。
  • 性能评估:计算各项性能指标,如准确率、召回率、F1分数等,并绘制混淆矩阵。
示例代码
数据读取示例代码
import pandas as pd
import numpy as np
import zipfile
import os

def load_data_from_zip(file_path, file_name):
    with zipfile.ZipFile(file_path, 'r') as zip_ref:
        zip_ref.extractall('temp_data')
    df = pd.read_csv(os.path.join('temp_data', file_name))
    return df

# 使用示例
data = load_data_from_zip('data/CWRU_Bearing_Dataset.zip', 'bearing_data.csv')
print(data.head())
数据预处理示例代码
from sklearn.preprocessing import StandardScaler

def preprocess_data(df):
    scaler = StandardScaler()
    scaled_data = scaler.fit_transform(df)
    return scaled_data

# 使用示例
processed_data = preprocess_data(data)
print(processed_data[:5])
模型训练示例代码
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix

def train_and_evaluate_model(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    model = RandomForestClassifier(n_estimators=100)
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    print(classification_report(y_test, predictions))
    print(confusion_matrix(y_test, predictions))

# 使用示例
train_and_evaluate_model(processed_data, data['label'])
项目目录结构
RotationMechanicalFaultDetection/
├── data/
│   ├── CWRU_Bearing_Dataset.zip
│   ├── IMS_Bearing_Dataset.7z
│   ├── FEMTO_Bearing_Dataset.zip
│   ├── MOSFET_Thermal_Overeating_Aging_v0.zip
│   ├── PHM08_Challenge_Data.zip
│   ├── CMAPSSData.zip
│   ├── AirQualityUCI.zip
│   ├── MillingMachine.zip
│   ├── HydraulicSystemData.zip
│   ├── PumpData.zip
│   ├── FlowData.zip
├── src/
│   ├── main.py  # 主程序入口
│   ├── data_processing.py  # 数据预处理脚本
│   ├── model_training.py  # 模型训练脚本
└── README.md  # 项目说明
项目运行

确保安装了必要的依赖库:

pip install pandas numpy scikit-learn

然后运行主程序:

python src/main.py
学习资源

项目中的代码包含了详细的注释,帮助初学者理解各个部分的功能和作用。同时,提供的数据集可以让用户快速上手,了解如何使用机器学习和深度学习模型进行旋转机械故障诊断。

总结

这个旋转机械故障数据集集合了多种类型的设备数据,适用于多种机械故障诊断任务。通过本项目,你可以深入学习如何处理和分析这些数据,并将其应用于实际的故障诊断中。对于初学者来说,这是一个很好的学习平台,可以深入了解旋转机械故障诊断技术及其在实际应用中的实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值