安全带 安全绳 检测数据集 数据集共有2000张;
已处理成yolo格式、voc格式,可直接用于训练;
标签类别及标签个数: 安全带穿戴规范:500 安全带规范使用:529 未佩戴安全带:514 未正确佩戴安全带:505
安全带安全绳检测数据集介绍
安全绳检测数据集数据集共有2000张;已处理成yolo格式、voc格式,可直接用于训练;4类 Yolov5-yolov10通用 安全带数据集 yolov5-yolov10通用高空作业
数据集概述
该数据集用于检测工人是否正确佩戴安全带和安全绳,总共包含2000张图像,已经处理成YOLO和VOC格式,可以直接用于训练目标检测模型。数据集中的标签类别及其数量如下:
- 安全带穿戴规范:500 张图像
- 安全带规范使用:529 张图像
- 未佩戴安全带:514 张图像
- 未正确佩戴安全带:505 张图像
数据集特点
- 针对性强:数据集专注于检测工人是否正确佩戴安全带和安全绳,有助于提高施工现场的安全管理。
- 格式多样:数据集同时提供YOLO和VOC格式的标签文件,适用于多种目标检测框架。
- 均衡分布:各类别标签的数量相对均衡,有助于模型的学习和泛化能力。
- 直接可用:所有图像和标签都已经处理完毕,可以直接用于模型训练,无需额外的预处理步骤。
数据集内容
- 图像文件:包含2000张JPG/PNG格式的图像文件。
- YOLO标签文件:每张图像对应一个
.txt
格式的标签文件,包含对象的边界框位置信息。 - VOC标签文件:每张图像对应一个
.xml
格式的标签文件,包含对象的边界框位置信息。 - 类别标签:包含四个类别,具体如下:
- 安全带穿戴规范
- 安全带规范使用
- 未佩戴安全带
- 未正确佩戴安全带
数据集结构示例
假设数据集的根目录为 safety_belt_rope_dataset
,其结构可能如下所示:
safety_belt_rope_dataset/
├── images/
│ ├── image_0001.jpg
│ ├── image_0002.jpg
│ └── ...
├── labels_yolo/
│ ├── image_0001.txt
│ ├── image_0002.txt
│ └── ...
├── labels_voc/
│ ├── image_0001.xml
│ ├── image_0002.xml
│ └── ...
└── data.yaml # 数据集配置文件
数据集配置文件 data.yaml
创建一个 data.yaml
文件来描述您的数据集。这里假设数据集被放置在一个名为 safety_belt_rope_dataset
的目录中,且包含 images
和 labels
子目录。
# data.yaml 文件
train: ../safety_belt_rope_dataset/images/train/
val: ../safety_belt_rope_dataset/images/val/
test: ../safety_belt_rope_dataset/images/test/
nc: 4 # number of classes
names: ['Safety Belt Worn Properly', 'Safety Belt Used Properly', 'No Safety Belt', 'Improperly Worn Safety Belt']
关键训练代码
安装YOLOv8
如果您还没有安装YOLOv8框架,请按照官方文档执行以下命令:
git clone https://github.com/ultralytics/ultralytics.git # 克隆YOLOv8仓库
cd ultralytics
pip install -r requirements.txt # 安装依赖项
使用YOLOv8训练
使用以下命令开始训练模型:
cd ultralytics
python train.py --img 640 --batch 16 --epochs 100 --data ../safety_belt_rope_dataset/data.yaml --weights yolov8m.pt --cache
自定义训练脚本
如果需要更详细的控制,可以编写一个Python脚本来执行训练过程。以下是一个简单的脚本示例:
import torch
from ultralytics import YOLO # 使用YOLOv8的API
def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_yaml = '../safety_belt_rope_dataset/data.yaml'
# 加载预训练模型
model = YOLO('yolov8m.pt').to(device) # 使用YOLOv8m作为基础模型
# 设置训练参数
epochs = 100
batch_size = 16
img_size = 640
# 开始训练
model.train(data=data_yaml, epochs=epochs, batch=batch_size, imgsz=img_size, device=device)
# 保存模型
model.save('trained_model.pt')
print('Training complete.')
if __name__ == '__main__':
main()
注意事项
- 数据一致性:确保所有图像和标签的大小一致,并且标签的格式符合模型要求。
- 标签格式:确保YOLO和VOC格式的标签文件正确无误。
- 数据集划分:在实际使用中,建议将数据集进一步划分为训练集、验证集和测试集,以评估模型性能。
- 超参数调整:根据实际训练情况调整学习率、批次大小等超参数。
测试模型
在训练完成后,您可以使用以下命令测试模型的性能
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --conf 0.4 --source ../safety_belt_rope_dataset/images/val/
使用预训练模型进行测试
如果您已经有了训练好的模型权重文件,可以直接使用它来进行测试。假设权重文件名为 best.pt
,可以使用以下命令:
python detect.py --weights best.pt --img 640 --conf 0.4 --source ../safety_belt_rope_dataset/images/val/
总结
这个示例展示了如何使用YOLOv8框架训练一个基于安全带安全绳检测的数据集。您可以根据自己的需求调整脚本中的参数和逻辑。通过使用这个数据集和相应的训练代码,您可以有效地训练出一个能够在多种条件下检测工人是否正确佩戴安全带的模型。在实际应用中,可以根据具体需求调整模型结构和训练参数。此外,提供的训练代码可以让您快速启动训练流程,并获得良好的检测效果。