使用 YOLOv8 训练工业零件检测数据集的详细步骤。这个数据集包含6种工业零件(轴承、螺栓、法兰、齿轮、螺母、弹簧),已经转换为 YOLO 格式,并且训练效果非常好,120轮后 mAP 达到 0.9。
如何使用 YOLOv8 训练工业零件检测数据集的详细步骤。这个数据集包含6种工业零件(轴承、螺栓、法兰、齿轮、螺母、弹簧),已经转换为 YOLO 格式,并且训练效果非常好,120轮后 mAP 达到 0.9。
一、数据准备
- 数据集结构
假设你的数据集已经按照 YOLO 格式组织,并且结构如下:
深色版本
industrial_parts_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── val/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ └── test/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── …
├── labels/
│ ├── train/
│ │ ├── 000001.txt
│ │ ├── 000002.txt
│ │ └── …
│ ├── val/
│ │ ├── 000001.txt
│ │ ├── 000002.txt
│ │ └── …
│ └── test/
│ ├── 000001.txt
│ ├── 000002.txt
│ └── …
└── industrial_parts.yaml
images/ 目录包含输入图像。
labels/ 目录包含对应的标注文件,每个标注文件中的每一行表示一个目标框,格式为 class_id x_center y_center width height。
industrial_parts.yaml 是数据集的配置文件。
2. 配置文件
创建一个 industrial_parts.yaml 文件,内容如下:
yaml
深色版本
数据集路径
path: ./industrial_parts_dataset
类别名称
names:
0: bearing
1: bolt
2: flange
3: gear
4: nut
5: spring
数据集划分
train: images/train
val: images/val
test: images/test
二、安装依赖
确保你已经安装了 YOLOv8 所需的依赖。可以使用以下命令安装:
bash
深色版本
pip install ultralytics
三、训练模型
- 导入库
python
深色版本
import torch
from ultralytics import YOLO - 加载模型
python
深色版本
加载预训练的YOLOv8模型
model = YOLO(‘yolov8n.yaml’) # 你可以选择其他预训练模型,如’yolov8s.yaml’、'yolov8m.yaml’等
3. 配置训练参数
python
深色版本
配置训练参数
model.train(
data=‘industrial_parts.yaml’, # 数据集配置文件
epochs=120, # 训练轮数
imgsz=640, # 输入图像大小
batch=16, # 批量大小
name=‘industrial_parts_detection’, # 训练结果保存的文件夹名称
device=‘cuda’ # 使用GPU进行训练
)
四、评估模型
训练完成后,可以使用验证集来评估模型的性能。
python
深色版本
评估模型
results = model.val(data=‘industrial_parts.yaml’, imgsz=640, batch=16, device=‘cuda’)
打印评估结果
print(results)
五、保存模型
训练完成后,模型会自动保存到指定的文件夹中。你也可以手动保存模型:
python
深色版本
保存模型
model.save(‘industrial_parts_detection_model.pt’)
六、完整代码
将上述所有步骤整合成一个完整的脚本:
import torch
from ultralytics import YOLO
加载预训练的YOLOv8模型
model = YOLO(‘yolov8n.yaml’) # 你可以选择其他预训练模型,如’yolov8s.yaml’、'yolov8m.yaml’等
配置训练参数
model.train(
data=‘industrial_parts.yaml’, # 数据集配置文件
epochs=120, # 训练轮数
imgsz=640, # 输入图像大小
batch=16, # 批量大小
name=‘industrial_parts_detection’, # 训练结果保存的文件夹名称
device=‘cuda’ # 使用GPU进行训练
)
评估模型
results = model.val(data=‘industrial_parts.yaml’, imgsz=640, batch=16, device=‘cuda’)
打印评估结果
print(results)
保存模型
model.save(‘industrial_parts_detection_model.pt’)
七、运行脚本
将上述代码保存为一个 Python 脚本文件(例如 train_industrial_parts_detection.py),然后在命令行中运行:
bash
深色版本
python train_industrial_parts_detection.py
八、引用数据集
如果你需要在论文中引用这个数据集,可以参考以下格式:
bibtex
深色版本
@article{industrial_parts_dataset,
title={Industrial Parts Detection Dataset},
author={Author Name},
journal={Journal Name},
year={2023},
note={Available at: \url{https://example.com/industrial_parts_dataset}}
}
请根据实际的数据集来源和作者信息进行修改。
九、注意事项
数据集路径:确保数据集路径正确,特别是图片和标注文件的路径。
硬件资源:训练大型模型可能需要较多的计算资源,建议使用 GPU。
超参数调整:根据实际情况调整学习率、批量大小等超参数,以获得更好的训练效果。
数据增强:为了提高模型的泛化能力,可以在训练过程中使用数据增强技术,如随机裁剪、翻转等。
希望这些步骤能帮助你成功训练一个工业零件检测模型。