深度学习模型 如何使用Swin-Transformer进行路面分割 并建立基于swin-transformer的路面分割

深度学习模型 如何使用Swin-Transformer进行路面分割 并建立基于swin-transformer的路面分割


以下文字及代码仅供参考。
基于swin-transformer的路面分割
在这里插入图片描述
1
在这里插入图片描述
基于Swin-Transformer的路面分割是一个复杂的任务,涉及到深度学习模型的设计、数据准备、训练和推理等多个步骤。以下是一个详细的代码示例,展示如何使用Swin-Transformer进行路面分割。

1. 环境搭建

确保安装了必要的库:

pip install torch torchvision torchaudio timm numpy opencv-python matplotlib

2. 数据准备

2.1 数据集格式

假设你已经有了标注好的数据集,其中包含图像文件和对应的分割标签文件(通常为.png格式)。

2.2 数据加载

编写一个自定义的数据加载器来读取图像和标签:

import os
import torch
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np

class RoadSegmentationDataset(Dataset):
    def __init__(self, image_dir, mask_dir, transform=None):
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.transform = transform
        self.images = os.listdir(image_dir)

    def __len__(self):
        return len(self.images)

    def __getitem__(self, index):
        img_path = os.path.join(self.image_dir, self.images[index])
        mask_path = os.path.join(self.mask_dir, self.images[index].replace('.jpg', '.png'))
        image = np.array(Image.open(img_path).convert("RGB"))
        mask = np.array(Image.open(mask_path), dtype=np.float32)
        mask[mask == 255.0] = 1.0

        if self.transform is not None:
            augmentations = self.transform(image=image, mask=mask)
            image = augmentations["image"]
            mask = augmentations["mask"]

        return image, mask

# 示例:创建数据加载器
from albumentations.pytorch import ToTensorV2
import albumentations as A

transform = A.Compose(
    [
        A.Resize(height=256, width=256),
        A.Normalize(
            mean=[0.0, 0.0, 0.0],
            std=[1.0, 1.0, 1.0],
            max_pixel_value=255.0,
        ),
        ToTensorV2(),
    ],
)

dataset = RoadSegmentationDataset(
    image_dir="path/to/images",
    mask_dir="path/to/masks",
    transform=transform,
)

dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2)

3. 模型构建

使用Swin-Transformer作为编码器,并添加解码器部分以进行分割任务:

import torch.nn as nn
import timm

class SwinTransformerSegmentation(nn.Module):
    def __init__(self, num_classes=1):
        super(SwinTransformerSegmentation, self).__init__()
        self.encoder = timm.create_model('swin_base_patch4_window7_224', pretrained=True, in_chans=3)
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, num_classes, kernel_size=1),
        )

    def forward(self, x):
        features = self.encoder.forward_features(x)
        out = self.decoder(features)
        return out

model = SwinTransformerSegmentation(num_classes=1)

4. 训练模型

编写训练循环来优化模型参数:

import torch.optim as optim

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10
for epoch in range(num_epochs):
    model.train()
    for images, masks in dataloader:
        images = images.to(device)
        masks = masks.unsqueeze(1).to(device)

        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, masks)
        loss.backward()
        optimizer.step()

    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

5. 推理与可视化

在新的图像上进行推理并可视化结果:

import matplotlib.pyplot as plt

def predict_and_visualize(image_path):
    model.eval()
    image = Image.open(image_path).convert("RGB")
    image = transform(image=image)["image"].unsqueeze(0).to(device)
    with torch.no_grad():
        output = model(image)
    output = torch.sigmoid(output).squeeze().cpu().numpy()
    output = (output > 0.5).astype(np.uint8)

    plt.figure(figsize=(10, 5))
    plt.subplot(1, 2, 1)
    plt.imshow(cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB))
    plt.title('Input Image')
    plt.axis('off')

    plt.subplot(1, 2, 2)
    plt.imshow(output, cmap='gray')
    plt.title('Predicted Mask')
    plt.axis('off')
    plt.show()

predict_and_visualize("path/to/test/image.jpg")

在这里插入图片描述

通过上述步骤,你可以构建一个基于Swin-Transformer的路面分割系统,并在新的图像上进行推理和可视化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值