【深度学习】Swin-Transformer和EfficientNet对比分析
文章目录
1 概述
2 算法解析
2.1 Speed
2.2 EfficientNet v2算法详解
2.3 渐进学习
3 EfficientUNet
4 总结
1 概述
就在几天前Swin Transformers刚刚为Transformer阵营夺下ImageNet的Top-1准确率(86.4%)不久,以Quoc V.Le为首的CNN阵营又通过大杀器AutoML又再次抢占了这个阵地(87.3%),而拿下这个Top-1的模型便是我们这里要介绍的EfficientNet v2 [1]。
那么EfficientNet v2是如何做到的呢?对比其他AutoML方法,EfficientNet v2深入探索了输入图像尺寸和模型的正则尺度