【深度学习】Swin-Transformer和EfficientNet对比分析

本文对比分析了Swin-Transformer和EfficientNet在深度学习中的表现。EfficientNet v2通过递增式AutoML,优化输入尺寸与正则尺度关系,提升了训练速度和准确率。提出渐进学习策略,逐步增加输入尺寸和正则化。实验显示,调整网络结构如使用Fused-MBConv能提高速度和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【深度学习】Swin-Transformer和EfficientNet对比分析

文章目录
1 概述
2 算法解析
	2.1 Speed
	2.2 EfficientNet v2算法详解
	2.3 渐进学习
3 EfficientUNet
4 总结

1 概述

就在几天前Swin Transformers刚刚为Transformer阵营夺下ImageNet的Top-1准确率(86.4%)不久,以Quoc V.Le为首的CNN阵营又通过大杀器AutoML又再次抢占了这个阵地(87.3%),而拿下这个Top-1的模型便是我们这里要介绍的EfficientNet v2 [1]。

那么EfficientNet v2是如何做到的呢?对比其他AutoML方法,EfficientNet v2深入探索了输入图像尺寸和模型的正则尺度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值