Python医学图像分割 通过训练医学类眼部血管分割数据集 建立基于UNet的眼底血管图像分割系统

Python医学图像分割 通过训练医学类眼部血管分割数据集 建立基于UNet的眼底血管图像分割系统


以下文字及代码仅供参考。

Python医学图像分割(眼底血管分割)
在这里插入图片描述

基于UNet的眼底血管图像分割
在这里插入图片描述
构建一个基于UNet的眼底血管图像分割系统是一个涉及数据准备、模型设计与训练、以及结果评估等多个步骤的过程。以下是一个详细的指南,包括环境搭建、数据预处理、模型定义与训练、以及使用Python实现整个系统的代码示例。

1. 环境搭建

首先,确保你的开发环境已经安装了必要的库和工具。这里以Anaconda和PyTorch为例。

安装依赖
# 创建并激活虚拟环境
conda create -n retinal_segmentation python=3.8
conda activate retinal_segmentation

# 安装PyTorch和相关库
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip install numpy matplotlib scikit-image

2. 数据准备

收集和标注眼底血管图像数据集,用于训练UNet模型进行图像分割。常用的公开数据集有DRIVE、STARE等。

数据预处理

对数据进行预处理,包括裁剪、缩放、归一化等操作,以便于模型训练。

import os
import cv2
import numpy as np
from skimage import io
from torch.utils.data import Dataset, DataLoader

class RetinaDataset(Dataset):
    def __init__(self, image_dir, mask_dir, transform=None):
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.transform = transform
        self.images = os.listdir(image_dir)

    def __len__(self):
        return len(self.images)

    def __getitem__(self, index):
        img_path = os.path.join(self.image_dir, self.images[index])
        mask_path = os.path.join(self.mask_dir, self.images[index].replace('.tif', '_manual1.gif'))
        image = io.imread(img_path)
        mask = io.imread(mask_path, as_gray=True)
        
        if self.transform is not None:
            image = self.transform(image)
            mask = self.transform(mask)
        
        return image, mask

def preprocess_image(image):
    # 裁剪和缩放
    image = cv2.resize(image, (512, 512))
    
    # 归一化
    image = image / 255.0
    
    return image

3. 模型定义与训练

UNet模型定义
import torch
import torch.nn as nn
import torch.nn.functional as F

class DoubleConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.conv(x)

class UNet(nn.Module):
    def __init__(self, n_channels=3, n_classes=1):
        super(UNet, self).__init__()
        self.inc = DoubleConv(n_channels, 64)
        self.down1 = nn.MaxPool2d(2)
        self.conv1 = DoubleConv(64, 128)
        self.down2 = nn.MaxPool2d(2)
        self.conv2 = DoubleConv(128, 256)
        self.up1 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
        self.conv3 = DoubleConv(256, 128)
        self.up2 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
        self.conv4 = DoubleConv(128, 64)
        self.outc = nn.Conv2d(64, n_classes, kernel_size=1)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x2 = self.conv1(x2)
        x3 = self.down2(x2)
        x3 = self.conv2(x3)
        x = self.up1(x3)
        x = torch.cat([x2, x], dim=1)
        x = self.conv3(x)
        x = self.up2(x)
        x = torch.cat([x1, x], dim=1)
        x = self.conv4(x)
        x = self.outc(x)
        return torch.sigmoid(x)

在这里插入图片描述
在这里插入图片描述

训练模型
import torch.optim as optim

# 初始化模型和优化器
model = UNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 定义损失函数
criterion = nn.BCELoss()

# 训练循环
num_epochs = 100
for epoch in range(num_epochs):
    for images, masks in dataloader:
        optimizer.zero_grad()
        
        outputs = model(images)
        loss = criterion(outputs, masks.unsqueeze(1).float())
        
        loss.backward()
        optimizer.step()
        
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')

在这里插入图片描述

4. 结果评估与可视化

在完成模型训练后,可以使用训练好的模型进行眼底血管图像分割,并将结果可视化。

import matplotlib.pyplot as plt

def evaluate_model(model, test_loader):
    model.eval()
    with torch.no_grad():
        for images, masks in test_loader:
            outputs = model(images)
            predicted_masks = (outputs > 0.5).float()
            
            fig, axs = plt.subplots(1, 3, figsize=(15, 5))
            axs[0].imshow(images[0].permute(1, 2, 0))
            axs[0].set_title('Original Image')
            axs[1].imshow(masks[0], cmap='gray')
            axs[1].set_title('Ground Truth')
            axs[2].imshow(predicted_masks[0][0], cmap='gray')
            axs[2].set_title('Predicted Mask')
            plt.show()

# 使用测试数据集评估模型
evaluate_model(model, test_loader)

以上代码仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值