绝缘子缺陷数据集 绝缘子缺陷检测图像数据集9类 1607张,train1285张,test162张val160张划分,标注为YOLOtxt格式可直接训练 绝缘体数据集玻璃脏数据集聚合物数据集 绝缘子
绝缘子缺陷检测图像数据集 9类 标签names: ['Glassdirty', 'Glassloss', 'Polymer', 'Polymerdirty', 'Two glass', 'broken disc', 'insulator', 'pollution-flashover', 'snow']
名称:【‘玻璃脏’,‘玻璃损耗’,‘聚合物’,‘聚合体脏’,‘两片玻璃’,‘破盘’,‘绝缘体’,‘污闪’】共1607张,近似8:1:1(train:1285张,test:162张,val:160张)比例划分,标注文件为YOLO适用的txt格式。可以直接用于模型训练。
绝缘子缺陷检测图像数据集介绍
数据集概述
该数据集专注于绝缘子的各种缺陷检测,包含9种类别的标签,分别是:玻璃脏(Glassdirty)、玻璃损耗(Glassloss)、聚合物(Polymer)、聚合体脏(Polymerdirty)、两片玻璃(Two glass)、破盘(broken disc)、绝缘体(insulator)、污闪(pollution-flashover)、雪(snow)。数据集共有1607张图像,按照大约8:1:1的比例划分为训练集(1285张)、测试集(162张)和验证集(160张)。标注文件为YOLO适用的.txt
格式,可以直接用于模型训练。
数据集特点
- 多类别标签:数据集涵盖了绝缘子常见的多种缺陷类型,有助于模型学习和识别不同的缺陷模式。
- 明确的数据划分:数据集按照标准的比例划分为训练集、验证集和测试集,便于模型训练和性能评估。
- 适用性强:YOLO格式的标注文件方便使用YOLO框架进行训练,减少了数据预处理的工作量。
数据集内容
- 图像文件:共有1607张JPG/PNG格式的图像文件。
- 标注文件:每张图像都配有YOLO格式的
.txt
标注文件。
数据集结构示例
假设数据集的根目录为 insulator_defects_dataset
,其结构可能如下所示:
insulator_defects_dataset/
├── images/
│ ├── train/
│ │ ├── train_image_0001.jpg
│ │ ├── train_image_0002.jpg
│ │ └── ...
│ ├── test/
│ │ ├── test_image_0001.jpg
│ │ ├── test_image_0002.jpg
│ │ └── ...
│ ├── val/
│ │ ├── val_image_0001.jpg
│ │ ├── val_image_0002.jpg
│ │ └── ...
├── labels_yolo/
│ ├── train/
│ │ ├── train_image_0001.txt
│ │ ├── train_image_0002.txt
│ │ └── ...
│ ├── test/
│ │ ├── test_image_0001.txt
│ │ ├── test_image_0002.txt
│ │ └── ...
│ ├── val/
│ │ ├── val_image_0001.txt
│ │ ├── val_image_0002.txt
│ │ └── ...
└── data.yaml # 数据集配置文件
数据集配置文件 data.yaml
创建一个data.yaml
文件来描述您的数据集。这里假设数据集被放置在一个名为insulator_defects_dataset
的目录中,且包含images
和labels
子目录。
# data.yaml 文件
train: ../insulator_defects_dataset/images/train/
val: ../insulator_defects_dataset/images/val/
test: ../insulator_defects_dataset/images/test/
nc: 9 # number of classes
names: ['Glassdirty', 'Glassloss', 'Polymer', 'Polymerdirty', 'Two glass', 'broken disc', 'insulator', 'pollution-flashover', 'snow'] # class names
关键训练代码
安装YOLOv5
如果您还没有安装YOLOv5,请按照官方文档执行以下命令:
git clone https://github.com/ultralytics/yolov5.git # clone repo
cd yolov5
pip install -r requirements.txt # install dependencies
使用YOLOv5命令行训练
使用以下命令开始训练模型:
cd yolov5
python train.py --img 640 --batch 16 --epochs 300 --data ../insulator_defects_dataset/data.yaml --weights yolov5s.pt --cache
自定义训练脚本
如果需要更详细的控制,可以编写一个Python脚本来执行训练过程。以下是一个简单的脚本示例:
import torch
from utils.datasets import LoadImagesAndLabels # 导入数据加载器
from models.experimental import attempt_load # 导入模型加载器
from utils.torch_utils import select_device # 导入选用设备的函数
from utils.general import check_dataset # 导入检查数据集的函数
def main():
device = select_device('') # 选择设备,自动选择GPU/CPU
data_yaml = '../insulator_defects_dataset/data.yaml'
train_images_folder = '../insulator_defects_dataset/images/train/'
train_labels_folder = '../insulator_defects_dataset/labels_yolo/train/'
val_images_folder = '../insulator_defects_dataset/images/val/'
val_labels_folder = '../insulator_defects_dataset/labels_yolo/val/'
# 加载数据集
train_set = LoadImagesAndLabels(train_images_folder, train_labels_folder)
val_set = LoadImagesAndLabels(val_images_folder, val_labels_folder)
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_set, batch_size=16, shuffle=True, num_workers=4)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=16, shuffle=False, num_workers=4)
# 加载预训练模型
model = attempt_load('yolov5s.pt', map_location=device) # 加载预训练权重
model.to(device)
# 设置损失函数和优化器
criterion = torch.nn.BCEWithLogitsLoss() # 适用于多标签分类
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练循环
epochs = 300
for epoch in range(epochs):
model.train()
for images, targets, _, _ in train_loader:
images = images.to(device)
targets = [t.to(device) for t in targets]
# 前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item()}')
torch.save(model.state_dict(), 'trained_model.pt')
print('Training complete.')
if __name__ == '__main__':
main()
注意事项
- 确保
data.yaml
文件中的路径是正确的,并且数据集的结构与上面描述的一致。 - 调整批量大小、学习率、迭代次数等超参数以适应您的计算资源和任务需求。
- 如果数据集很大,您可能需要更多的计算资源和时间来完成训练。
- 这个脚本仅作为一个起点,您可能需要根据实际情况做进一步的修改。
测试模型
在训练完成后,您可以通过以下命令测试模型的性能:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --conf 0.4 --source ../insulator_defects_dataset/images/test/
总结
这个示例展示了如何使用YOLOv5框架训练一个基于绝缘子缺陷检测的数据集。您可以根据自己的需求调整脚本中的参数和逻辑。通过使用这个数据集和相应的训练代码,您可以有效地训练出一个能够在多种条件下识别绝缘子缺陷的模型。