数据集包括3个类:
carry objects(携带工具)、helmet(戴头盔)、no-helmet(没带头盔)
按8:1:1比例划分为train:5110张,val:639张,test:639张
yolo系列可以直接拿来进行训练
本数据集面对的是复杂场景的安全帽图片,
数据集中包含有煤矿场景,因图片目标较为单一,为扩充数据集,对其他安全帽数据集的图片进行了复杂场景的处理,同时重新使用新的类标注图片。
如何使用 YOLOv8 训练矿井安全帽检测数据集的详细步骤。YOLOv8 是 YOLO 系列的最新版本,具有更高的精度和更快的推理速度。
一、数据准备
- 数据集结构
假设你的数据集已经按照 8:1:1 的比例划分好,并且结构如下:
深色版本
mine_safety_helmet_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── v