使用 YOLOv8 训练矿井安全帽检测数据集的详细步骤 矿井安全帽数据集改如何训练呢?

数据集包括3个类:在这里插入图片描述

carry objects(携带工具)、helmet(戴头盔)、no-helmet(没带头盔)
按8:1:1比例划分为train:5110张,val:639张,test:639张
yolo系列可以直接拿来进行训练
本数据集面对的是复杂场景的安全帽图片,
数据集中包含有煤矿场景,因图片目标较为单一,为扩充数据集,对其他安全帽数据集的图片进行了复杂场景的处理,同时重新使用新的类标注图片。在这里插入图片描述
在这里插入图片描述
如何使用 YOLOv8 训练矿井安全帽检测数据集的详细步骤。YOLOv8 是 YOLO 系列的最新版本,具有更高的精度和更快的推理速度。

一、数据准备

  1. 数据集结构
    假设你的数据集已经按照 8:1:1 的比例划分好,并且结构如下:

深色版本
mine_safety_helmet_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值