如何使用YOLOv8进行电线杆识别数据集,并提供详细的训练代码和数据集准备步骤

在这里插入图片描述
在这里插入图片描述
如何使用YOLOv8进行电线杆识别,并提供详细的训练代码和数据集准备步骤。假设你已经有一个包含1493张图片的数据集,并且模型已经训练了200轮。
在这里插入图片描述

项目结构
深色版本在这里插入图片描述

power_pole_detection/
├── dataset/
│ ├── images/
│ │ ├── train/
│ │ ├── val/
│ │ └── test/
│ ├── labels/
│ │ ├── train/
│ │ ├── val/
│ │ └── test/
├── weights/
│ └── best.pt
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
├── requirements.txt
└── README.md

  1. 安装依赖
    首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值