如何使用YOLOv8模型进行学生课堂行为检测任务,并提供详细的训练代码和数据集准备步骤。假设你已经有一个包含6400张图像的数据集,这些图像已经按VOC格式存储,并且提供了YOLO格式的标注文件。
项目结构
深色版本
student_behavior_detection/
├── dataset/
│ ├── images/
│ │ └── *.jpg
│ ├── labels/
│ │ └── *.txt
├── models/
│ └── yolov8/
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
├── weights/
│ └── best_model.pt
├── requirements.txt
└── README.md
- 安装依赖
首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:
深色版本
torch
torchvision
numpy
pandas
matplotlib
tqdm
pyyaml
opencv-python
ultralytics
然后,使用以下命令安装依赖:
bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:
深色版本
dataset/
├── images/
│ └── *.jpg
├── labels/
│ └── *.txt
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,标签文件是YOLO格式的.txt文件。
- 数据集配置
创建一个数据集类,用于加载和预处理数据。
3.1 src/utils.py
python
深色版本
import os
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
class StudentBehaviorDetectionDataset(Dataset):
def init(self, image_dir, label_dir, transform=None):
self.image_dir = image_dir
self.label_dir = label_dir
self.