鸟类识别系统(附报告)
系统实现了多种鸟类种类检测识别在内的多项功能:包括通过选择鸟类图片、视频、摄像头对画面中鸟类别进行实时识别;可通过UI界面选择文件,切换标记识别目标,支持切换模型,支持用户登录注册界面;基于YOLOv5模型训练实现,提供训练数据集和训练代码,检测速度快、识别精度较高。
步骤一:数据收集和预处理
你需要一个包含大量鸟类图片的数据集。你可以自己拍摄或从公开数据集(如CUB-200-2011)中获取。数据集应该分为训练集、验证集和测试集。
步骤二:数据标注
使用工具(如LabelImg)手动标注数据集中的鸟类边界框和类别。
步骤三:模型训练
使用YOLOv5进行模型训练。首先,你需要安装YOLOv5库和依赖包。然后,修改YOLOv5的配置文件以适应你的数据集。
bash
深色版本
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt
修改data.yaml文件以匹配你的数据集:
yaml
深色版本
train: ./images/train
val: ./images/val
test: ./images/test
nc: 10 # numb