基于YOLOv5的高压输电线绝缘子缺陷智能检测系统
附代码仅供参考
项目介绍:
软件:Pycharm+Anaconda
环境:python=3.8 opencv-python PyQt5 torch1.9
文件:
1.完整程序文件(.py等
2.UI界面源文件、图标(.ui、.qrc、.py等)
3.测试图片、视频文件(.jpeg、.mp4、.avi等)
功能: 系统可用于高压输电线绝缘子缺陷检测,检测绝缘子是否有缺失; 支持图片、视频及摄像头进行检测。
①选择图片进行对于高压输电线绝缘子缺陷检测。
①选择文件夹批量进行对于高压输电线绝缘子缺陷检测。
②选择视频进行对于高压输电线绝缘子缺陷检测。
③摄像头进行检测对于高压输电线绝缘子缺陷检测
好的,下面是一个完整的基于YOLOv5的高压输电线绝缘子缺陷智能检测系统的实现。我们将涵盖以下内容:
- 项目结构
- 依赖项安装
- 数据准备
- 模型训练
- 评估模型
- 推理界面
完整项目结构
insulator_defect_detection/
├── main.py
├── train.py
├── evaluate.py
├── infer.py
├── ui_files/
│ ├── infer_ui.ui
│ ├── infer_ui.qrc
│ └── infer_ui_rc.py
├── datasets/
│ ├── insulators/
│ │ ├── images/
│ │ ├── labels/
│ │ ├── train.txt
│ │ └── val.txt
├── best_insulator.pt
├── requirements.txt
└── data.yaml
文件内容
requirements.txt
opencv-python==4.5.3.56
torch==1.9.0+cu111
PyQt5==5.15.4
labelme
shutil
matplotlib
data.yaml
train: ./datasets/insulators/images/train
val: ./datasets/insulators/images/val
nc: 1
names: ['defect']
train.py
import torch
from yolov5 import train
# 设置随机种子以保证可重复性
torch.manual_seed(42)
# 定义数据集路径
dataset_config = 'data.yaml'
# 训练模型
results = train.run(
imgsz=640,
batch=16,
epochs=50,
data=dataset_config,
weights='yolov5s.pt',
name='insulator_defect',
project='runs/train'
)
# 打印训练结果
print(results)
evaluate.py
from yolov5 import val
# 初始化YOLOv5模型
model_path = 'runs/train/insulator_defect/weights/best.pt'
# 评估模型
results = val.run(
data='data.yaml',
weights=model_path,
imgsz=640,
task='val'
)
# 打印评估结果
print(results)
infer.py
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QMessageBox, QLabel, QPushButton, QVBoxLayout, QWidget, QProgressBar
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtCore import QTimer
import torch
from pathlib import Path
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.models.experimental import attempt_load
from yolov5.utils.torch_utils import select_device
class MainWindow(QMainWindow):
def __init__(self):
super(MainWindow, self).__init__()
self.setWindowTitle("高压输电线绝缘子缺陷检测")
self.setGeometry(100, 100, 800, 600)
# 初始化YOLOv5模型
self.device = select_device('')
self.model = attempt_load('runs/train/insulator_defect/weights/best.pt', map_location=self.device)
self.stride = int(self.model.stride.max()) # model stride
self.imgsz = 640
# 创建界面元素
self.label_display = QLabel(self)
self.label_display.setAlignment(Qt.AlignCenter)
self.button_select_image = QPushButton("选择图片", self)
self.button_select_folder = QPushButton("选择文件夹", self)
self.button_select_video = QPushButton("选择视频", self)
self.button_start_camera = QPushButton("开始摄像头", self)
self.button_stop_camera = QPushButton("停止摄像头", self)
self.progress_bar = QProgressBar(self)
self.progress_bar.setVisible(False)
layout = QVBoxLayout()
layout.addWidget(self.label_display)
layout.addWidget(self.button_select_image)
layout.addWidget(self.button_select_folder)
layout.addWidget(self.button_select_video)
layout.addWidget(self.button_start_camera)
layout.addWidget(self.button_stop_camera)
layout.addWidget(self.progress_bar)
container = QWidget()
container.setLayout(layout)
self.setCentralWidget(container)
self.button_select_image.clicked.connect(self.select_image)
self.button_select_folder.clicked.connect(self.select_folder)
self.button_select_video.clicked.connect(self.select_video)
self.button_start_camera.clicked.connect(self.start_camera)
self.button_stop_camera.clicked.connect(self.stop_camera)
self.timer = QTimer()
self.timer.timeout.connect(self.update_frame)
self.cap = None
self.results = []
def load_image(self, image_path):
frame = cv2.imread(image_path)
results = self.detect(frame)
annotated_frame = self.draw_annotations(frame, results)
return annotated_frame
def detect(self, img0):
img = letterbox(img0, new_shape=self.imgsz, stride=self.stride)[0]
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred = self.model(img, augment=False)[0]
pred = non_max_suppression(pred, 0.25, 0.45, classes=None, agnostic=False)
return pred
def draw_annotations(self, frame, results):
for det in results:
if len(det):
det[:, :4] = scale_coords(frame.shape[2:], det[:, :4], frame.shape).round()
for *xyxy, conf, cls in reversed(det):
label = f'{self.model.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, frame, label=label, color=(0, 255, 0), line_thickness=3)
return frame
def display_image(self, frame):
rgb_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
qt_image = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qt_image)
self.label_display.setPixmap(pixmap.scaled(self.label_display.width(), self.label_display.height()))
def select_image(self):
options = QFileDialog.Options()
file_path, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "图片 (*.jpg *.jpeg *.png);;所有文件 (*)", options=options)
if file_path:
annotated_frame = self.load_image(file_path)
self.display_image(annotated_frame)
self.results.append((file_path, annotated_frame))
def select_folder(self):
folder_path = QFileDialog.getExistingDirectory(self, "选择文件夹")
if folder_path:
files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith(('.jpg', '.jpeg', '.png'))]
total_files = len(files)
self.progress_bar.setMaximum(total_files)
self.progress_bar.setValue(0)
self.progress_bar.setVisible(True)
for i, file_path in enumerate(files):
annotated_frame = self.load_image(file_path)
self.display_image(annotated_frame)
self.results.append((file_path, annotated_frame))
self.progress_bar.setValue(i + 1)
self.progress_bar.setVisible(False)
def select_video(self):
options = QFileDialog.Options()
file_path, _ = QFileDialog.getOpenFileName(self, "选择视频", "", "视频 (*.mp4 *.avi);;所有文件 (*)", options=options)
if file_path:
self.process_video(file_path)
def process_video(self, video_path):
self.cap = cv2.VideoCapture(video_path)
while self.cap.isOpened():
ret, frame = self.cap.read()
if not ret:
break
results = self.detect(frame)
annotated_frame = self.draw_annotations(frame, results)
self.display_image(annotated_frame)
self.results.append((video_path, annotated_frame))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
self.cap.release()
def start_camera(self):
self.cap = cv2.VideoCapture(0)
self.timer.start(30)
def stop_camera(self):
self.timer.stop()
if self.cap is not None:
self.cap.release()
self.label_display.clear()
def update_frame(self):
ret, frame = self.cap.read()
if not ret:
return
results = self.detect(frame)
annotated_frame = self.draw_annotations(frame, results)
self.display_image(annotated_frame)
self.results.append(('camera', annotated_frame))
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
shape = img.shape[:2] # current shape [height, width]
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return img, ratio, (dw, dh)
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
if __name__ == "__main__":
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())
运行步骤总结
-
克隆项目仓库(如果有的话):
git clone https://github.com/yourusername/insulator_defect_detection.git cd insulator_defect_detection
-
安装依赖项:
conda create --name insulator_env python=3.8 conda activate insulator_env pip install -r requirements.txt
-
下载YOLOv5代码:
git clone https://github.com/ultralytics/yolov5.git cd yolov5 pip install -r requirements.txt cd ..
-
准备数据集:
- 将你的高压输电线绝缘子图像放入
datasets/insulators/images
目录。 - 将对应的标注文件(假设为YOLO格式的TXT文件)放入
datasets/insulators/labels
目录。 - 使用脚本划分数据集为训练集和验证集,并生成
train.txt
和val.txt
文件。
- 将你的高压输电线绝缘子图像放入
-
训练模型:
python train.py
-
评估模型:
python evaluate.py
-
运行推理界面:
python infer.py
操作界面
- 选择图片进行检测:点击“选择图片”按钮,选择一张图片进行检测。
- 选择文件夹批量检测:点击“选择文件夹”按钮,选择一个包含多张图片的文件夹进行批量检测。
- 选择视频进行检测:点击“选择视频”按钮,选择一个视频文件进行检测。
- 摄像头检测:点击“开始摄像头”按钮,使用摄像头进行实时检测;点击“停止摄像头”按钮停止检测。
详细解释
requirements.txt
列出项目所需的所有Python包及其版本。
data.yaml
配置数据集路径和类别信息,用于YOLOv5模型训练。
train.py
加载预训练的YOLOv5s模型并使用自定义数据集进行训练。训练完成后打印训练结果。
evaluate.py
加载训练好的YOLOv5模型并对验证集进行评估,打印评估结果。
infer.py
创建一个GUI应用程序,支持选择图片、文件夹、视频或使用摄像头进行实时检测,并显示检测结果。
!