YOLOv5、YOLOv7和YOLOv8,,yolov9,yolov10,11的一些关键改进,及改进方法

YOLOv5、YOLOv7和YOLOv8的一些关键改进,及改进方法


在这里插入图片描述

yolov11, yolov5,yolov7,yolov8,yolov9,yolov10改进方法

改进方法

YOLO(You Only Look Once)是一种流行的目标检测框架,多年来经历了许多改进和迭代。从YOLOv1到YOLOv8,每个版本都引入了各种增强功能来提高准确性、速度和效率。以下是针对YOLOv5、YOLOv7和YOLOv8的一些关键改进,并附有代码示例。在这里插入图片描述

YOLOv5的主要改进

1. 主干网络
  • CSPNet(跨阶段局部网络):这种主干网络通过结合不同阶段的特征来改进特征提取。
    class CSPBlock(nn.Module):
        def __init__(self, in_channels, out_channels, n=1, shortcut=True):
            super(CSPBlock, self).__init__()
            c_ = int(out_channels / 2)
            self.cv1 = Conv(in_channels, c_, 1, 1)
            self.cv2 = Conv(in_channels, c_, 1, 1)
            self.cv3 = Conv(2 * c_, out_channels, 1, 1)
            self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut) for _ in range(n)])
    
        def forward(self, x):
            y1 = self.cv1(x)
            y2 = self.cv2(x)
            y2 = self.m(y2)
            return self.cv3(torch.cat((y1, y2), dim=1))
    

在这里插入图片描述

2. SPP(空间金字塔池化)
  • 添加多尺度上下文信息。
    class SPP(nn.Module):
        def __init__(self, in_channels, out_channels, k=(5, 9, 13)):
            super(SPP, self).__init__()
            c_ = in_channels // 2
            self.cv1 = Conv(in_channels, c_, 1, 1)
            self.cv2 = Conv(c_ * len(k), out_channels, 1, 1)
            self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
    
        def forward(self, x):
            x = self.cv1(x)
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
    
3. Focus层
  • 使用Focus层增强特征提取。
    class Focus(nn.Module):
        def __init__(self, in_channels, out_channels, k=1):
            super(Focus, self).__init__()
            self.conv = Conv(in_channels * 4, out_channels, k, 1)
    
        def forward(self, x):
            return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
    

在这里插入图片描述

YOLOv7的主要改进

1. E-Blocks(增强块)
  • 增强特征提取和融合。
    class EBlock(nn.Module):
        def __init__(self, in_channels, out_channels):
            super(EBlock, self).__init__()
            self.conv1 = Conv(in_channels, out_channels, 1, 1)
            self.conv2 = Conv(out_channels, out_channels, 3, 1)
            self.conv3 = Conv(out_channels, out_channels, 1, 1)
            self.conv4 = Conv(out_channels, out_channels, 3, 1)
            self.conv5 = Conv(out_channels, out_channels, 1, 1)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = self.conv3(x)
            x = self.conv4(x)
            x = self.conv5(x)
            return x
    
2. FocusV2层
  • 改进的Focus层。
    class FocusV2(nn.Module):
        def __init__(self, in_channels, out_channels, k=1):
            super(FocusV2, self).__init__()
            self.conv = Conv(in_channels * 4, out_channels, k, 1)
    
        def forward(self, x):
            return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
    

YOLOv8的主要改进

1. Transformer Blocks
  • 引入transformer块以更好地进行特征提取。
    class TransformerBlock(nn.Module):
        def __init__(self, in_channels, out_channels, num_heads=8):
            super(TransformerBlock, self).__init__()
            self.norm1 = nn.LayerNorm(in_channels)
            self.attn = nn.MultiheadAttention(in_channels, num_heads)
            self.norm2 = nn.LayerNorm(in_channels)
            self.ffn = nn.Sequential(
                nn.Linear(in_channels, in_channels * 4),
                nn.GELU(),
                nn.Linear(in_channels * 4, in_channels)
            )
    
        def forward(self, x):
            x = x + self.attn(self.norm1(x))[0]
            x = x + self.ffn(self.norm2(x))
            return x
    
2. 高效的注意力机制
  • 使用高效的注意力机制。
    class EfficientAttention(nn.Module):
        def __init__(self, in_channels, out_channels):
            super(EfficientAttention, self).__init__()
            self.qkv = nn.Linear(in_channels, in_channels * 3)
            self.proj_out = nn.Linear(in_channels, out_channels)
    
        def forward(self, x):
            qkv = self.qkv(x).reshape(x.shape[0], 3, x.shape[1], -1).permute(1, 2, 0, 3)
            q, k, v = qkv[0], qkv[1], qkv[2]
            attn = torch.softmax(torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.shape[-1]), dim=-1)
            out = torch.matmul(attn, v).permute(1, 0, 2).reshape(x.shape)
            return self.proj_out(out)
    

其他重要改进

1. 损失函数优化
  • 改进的损失函数以获得更好的收敛性。
    class YOLOv8Loss(nn.Module):
        def __init__(self):
            super(YOLOv8Loss, self).__init__()
            self.bce_with_logits = nn.BCEWithLogitsLoss(reduction='none')
    
        def forward(self, pred, target):
            obj_loss = self.bce_with_logits(pred[:, :, 0], target[:, :, 0])
            cls_loss = self.bce_with_logits(pred[:, :, 1:], target[:, :, 1:])
            return obj_loss.mean() + cls_loss.mean()
    
2. 语义特征融合
  • 融合来自不同尺度的语义特征。
    class SemanticFusion(nn.Module):
        def __init__(self, in_channels, out_channels):
            super(SemanticFusion, self).__init__()
            self.up = nn.Upsample(scale_factor=2, mode='nearest')
            self.conv = Conv(in_channels * 2, out_channels, 1, 1)
    
        def forward(self, x1, x2):
            x1 = self.up(x1)
            x = torch.cat([x1, x2], dim=1)
            return self.conv(x)
    

当然,以下是针对YOLO系列模型的十个额外改进方法,并附上代码示例:

1. SE-Block(Squeeze-and-Excitation Block)

  • SE-Block用于增强通道间的特征交互。
    class SELayer(nn.Module):
        def __init__(self, channel, reduction=16):
            super(SELayer, self).__init__()
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
            self.fc = nn.Sequential(
                nn.Linear(channel, channel // reduction, bias=False),
                nn.ReLU(inplace=True),
                nn.Linear(channel // reduction, channel, bias=False),
                nn.Sigmoid()
            )
    
        def forward(self, x):
            b, c, _, _ = x.size()
            y = self.avg_pool(x).view(b, c)
            y = self.fc(y).view(b, c, 1, 1)
            return x * y.expand_as(x)
    

2. CBAM(Convolutional Block Attention Module)

  • CBAM结合了空间和通道注意力机制。
    class CBAM(nn.Module):
        def __init__(self, in_channels, reduction=16):
            super(CBAM, self).__init__()
            self.channel_attention = SELayer(in_channels, reduction)
            self.spatial_attention = nn.Sequential(
                nn.Conv2d(in_channels, 1, kernel_size=7, padding=3),
                nn.Sigmoid()
            )
    
        def forward(self, x):
            out = self.channel_attention(x) * x
            out = self.spatial_attention(out) * out
            return out
    

3. ASPP(Atrous Spatial Pyramid Pooling)

  • ASPP用于多尺度特征提取。
    class ASPP(nn.Module):
        def __init__(self, in_channels, out_channels, rates=[6, 12, 18]):
            super(ASPP, self).__init__()
            self.branches = nn.ModuleList([
                nn.Conv2d(in_channels, out_channels, 1, 1, padding=0, dilation=1, bias=True),
                nn.Conv2d(in_channels, out_channels, 3, 1, padding=rates[0], dilation=rates[0], bias=True),
                nn.Conv2d(in_channels, out_channels, 3, 1, padding=rates[1], dilation=rates[1], bias=True),
                nn.Conv2d(in_channels, out_channels, 3, 1, padding=rates[2], dilation=rates[2], bias=True),
                nn.Conv2d(in_channels, out_channels, 1, 1, padding=0, dilation=1, bias=True)
            ])
    
        def forward(self, x):
            features = [branch(x) for branch in self.branches]
            return torch.cat(features, dim=1)
    

4. Ghost Module

  • Ghost模块用于减少参数量并保持性能。
    class GhostModule(nn.Module):
        def __init__(self, in_channels, out_channels, kernel_size=1, ratio=2):
            super(GhostModule, self).__init__()
            init_channels = out_channels // ratio
            new_channels = out_channels - init_channels
    
            self.primary_conv = nn.Sequential(
                nn.Conv2d(in_channels, init_channels, kernel_size, stride=1, padding=kernel_size // 2, bias=False),
                nn.BatchNorm2d(init_channels),
                nn.ReLU(inplace=True)
            )
    
            self.cheap_operation = nn.Sequential(
                nn.Conv2d(init_channels, new_channels, kernel_size=1, stride=1, bias=False),
                nn.BatchNorm2d(new_channels),
                nn.ReLU(inplace=True)
            )
    
        def forward(self, x):
            x1 = self.primary_conv(x)
            x2 = self.cheap_operation(x1)
            out = torch.cat([x1, x2], dim=1)
            return out
    

5. ResNeXt Block

  • ResNeXt块引入了分组卷积以提高性能。
    class ResNeXtBlock(nn.Module):
        def __init__(self, in_channels, out_channels, groups=32):
            super(ResNeXtBlock, self).__init__()
            self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(out_channels)
            self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, groups=groups, bias=False)
            self.bn2 = nn.BatchNorm2d(out_channels)
            self.conv3 = nn.Conv2d(out_channels, out_channels * 2, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(out_channels * 2)
            self.relu = nn.ReLU(inplace=True)
    
        def forward(self, x):
            residual = x
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
            out = self.conv3(out)
            out = self.bn3(out)
            out += residual
            out = self.relu(out)
            return out
    

6. Attention Mechanism with MLP

  • 使用MLP的注意力机制。
    class MLPAffinity(nn.Module):
        def __init__(self, in_channels, hidden_dim=128):
            super(MLPAffinity, self).__init__()
            self.mlp = nn.Sequential(
                nn.Linear(in_channels, hidden_dim),
                nn.ReLU(),
                nn.Linear(hidden_dim, in_channels)
            )
    
        def forward(self, x):
            B, C, H, W = x.shape
            x = x.view(B, C, -1)
            affinity = self.mlp(x)
            attention = F.softmax(affinity, dim=-1)
            return attention
    

7. Feature Pyramid Network (FPN)

  • FPN用于融合不同尺度的特征。
    class FPN(nn.Module):
        def __init__(self, in_channels_list, out_channels):
            super(FPN, self).__init__()
            self.lateral_convs = nn.ModuleList([
                nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
                for in_channels in in_channels_list
            ])
            self.fpn_convs = nn.ModuleList([
                nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
                for _ in range(len(in_channels_list))
            ])
    
        def forward(self, inputs):
            laterals = [
                lateral_conv(inputs[i])
                for i, lateral_conv in enumerate(self.lateral_convs)
            ]
            used_backbone_levels = len(laterals)
            for i in range(used_backbone_levels - 1, 0, -1):
                laterals[i - 1] += F.interpolate(laterals[i], scale_factor=2, mode='nearest')
    
            outs = [
                self.fpn_convs[i](laterals[i])
                for i in range(used_backbone_levels)
            ]
            return tuple(outs)
    

8. BiFPN (Bi-directional Feature Pyramid Network)

  • BiFPN在FPN的基础上增加了双向连接。
    class BiFPN(nn.Module):
        def __init__(self, in_channels_list, out_channels):
            super(BiFPN, self).__init__()
            self.lateral_convs = nn.ModuleList([
                nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
                for in_channels in in_channels_list
            ])
            self.fpn_convs = nn.ModuleList([
                nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
                for _ in range(len(in_channels_list))
            ])
    
        def forward(self, inputs):
            laterals = [
                lateral_conv(inputs[i])
                for i, lateral_conv in enumerate(self.lateral_convs)
            ]
            used_backbone_levels = len(laterals)
            for i in range(used_backbone_levels - 1, 0, -1):
                laterals[i - 1] += F.interpolate(laterals[i], scale_factor=2, mode='nearest')
            for i in range(1, used_backbone_levels):
                laterals[i] += F.interpolate(laterals[i - 1], scale_factor=2, mode='nearest')
    
            outs = [
                self.fpn_convs[i](laterals[i])
                for i in range(used_backbone_levels)
            ]
            return tuple(outs)
    

9. IoU Loss

  • 改进的损失函数,使用IoU损失。
    class IOULoss(nn.Module):
        def __init__(self):
            super(IOULoss, self).__init__()
    
        def forward(self, pred, target):
            pred_boxes = pred[:, :, :4]
            target_boxes = target[:, :, :4]
    
            # 计算IoU
            intersection = self.intersection(pred_boxes, target_boxes)
            union = self.union(pred_boxes, target_boxes)
            iou = intersection / union
    
            loss = 1 - iou
            return loss.mean()
    
        def intersection(self, box1, box2):
            tl = torch.max(box1[:, :2
    
    

总结

以上是YOLOv5、YOLOv7和YOLOv8中的一些关键改进。每个版本都引入了新的架构、层和技术以提升性能。提供的代码片段展示了这些改进,但还有更多的优化和变体可以探索。希望这些内容能帮助你理解和实现基于最新YOLO版本的目标检测系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值