深度学习目标检测框架训练使用Wider Face人脸检测数据集 _YOLO(You Only Look Once)系列算法进行人脸识别检测任务

深度学习目标检测框架训练使用Wider Face人脸检测数据集 _YOLO(You Only Look Once)系列算法进行人脸识别检测任务


Wider Face人脸检测数据集
voc和yolo两种格式,yolo
标注face
训练集:12876
验证集:3226
测试集:8049
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
在这里插入图片描述
1
在这里插入图片描述
针对Wider Face人脸检测数据集,、使用YOLO(You Only Look Once)系列算法进行人脸检测任务,并且数据集已经提供YOLO格式的标注文件,、准备数据、训练模型、评估性能以及一些优化策略。

数据准备

假设您的数据和标签已经按照YOLO的要求组织好,即每张图像对应一个.txt文件,该文件包含边界框信息。每个.txt文件中的每一行代表一个对象,格式如下:

class_id center_x center_y width height

所有值都是相对于图像尺寸归一化后的浮点数。确保你的数据集按照以下结构组织:

wider_face_dataset/
├── images/
│   ├── train/
│   ├── val/
│   └── test/
└── labels/
    ├── train/
    ├── val/
    └── test/

并且有一个配置文件data.yaml来定义数据集路径和类别信息:

train: ./wider_face_dataset/images/train/
val: ./wider_face_dataset/images/val/

nc: 1  # 类别数量,这里是1因为只检测face
names: ['face']  # 类别名

模型训练

以YOLOv5为例进行模型训练。首先确保你已经安装了YOLOv5的相关依赖。可以从GitHub上克隆YOLOv5仓库并安装依赖:

git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt

然后,开始训练过程:

from ultralytics import YOLO

def main_train():
    model = YOLO('yolov5s.yaml')  # 或者选择其他预训练模型,例如 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt'
    
    results = model.train(
        data='./path/to/data.yaml',  # 替换为你的data.yaml路径
        epochs=300,
        imgsz=640,  # 根据需要调整图像大小
        batch=16,  # 根据你的硬件条件调整batch size
        project='./runs/detect',
        name='wider_face_detection',
        optimizer='SGD',
        device='0',  # 使用GPU编号,'0'表示第一个GPU
        save=True,
        cache=True,
    )

if __name__ == '__main__':
    main_train()

模型评估

在训练完成后,可以使用验证集对模型进行评估:

from ultralytics import YOLO

model = YOLO('./runs/detect/wider_face_detection/weights/best.pt')
metrics = model.val(data='./path/to/data.yaml')
print(metrics.box.map)  # 输出mAP值等指标

推理与可视化

加载训练好的模型进行推理,并可视化结果:

from ultralytics import YOLO
import cv2
from PIL import Image

model = YOLO('./runs/detect/wider_face_detection/weights/best.pt')

def detect_faces(image_path):
    results = model.predict(source=image_path)
    img = cv2.imread(image_path)
    for result in results:
        boxes = result.boxes.numpy()
        for box in boxes:
            r = box.xyxy
            x1, y1, x2, y2 = int(r[0]), int(r[1]), int(r[2]), int(r[3])
            label = result.names[int(box.cls)]
            confidence = box.conf
            if confidence > 0.5:  # 设置置信度阈值
                cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)  # 绘制矩形框
                cv2.putText(img, f'{label} {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
    return img

# 示例调用
result_image = detect_faces('your_test_image.jpg')
Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)).show()  # 使用PIL显示图像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值