1. 引言
人脸检测是计算机视觉领域的一个基础且重要的研究任务。随着人工智能技术的发展,人脸检测在许多实际应用中发挥着至关重要的作用,例如视频监控、人机交互、智能安全等。近年来,基于深度学习的方法取得了显著进展,其中 YOLO (You Only Look Once) 系列模型凭借其实时检测的优异性能,成为人脸检测任务中常用的算法之一。
本文将基于 YOLOv10 模型,结合 WIDER FACE 数据集 进行人脸检测的完整实现。我们将从数据集介绍、数据预处理、模型训练、评估与测试等方面,逐步深入探讨如何使用YOLOv10完成WIDER FACE数据集上的人脸检测任务,并附带详细的代码实现,帮助读者更好地理解整个过程。
2. 背景知识与技术概述
2.1 人脸检测概述
人脸检测是计算机视觉中的基础任务之一,旨在从图像或视频中识别人脸的存在并准确定位其位置。传统的人脸检测方法(如基于Haar特征的AdaBoost分类器和HOG特征+SVM方法)往往存在精度不高、对复杂环境不够鲁棒等问题。随着深度学习技术的兴起,卷积神经网络(CNN)逐渐成为解决人脸检测任务的主流方法,尤其是基于深度学习的YOLO系列算法,凭借其速度与准确度兼具的优势&#x