众所周知,数据集(Datasets)对于模型来说非常重要,它是大模型这台庞大机器的原材料,在机器学习领域中所有的原生模型都是通过数据集训练出来的。本文将以通俗易懂的方式为大家介绍一下大模型的数据集,让大家了解深度学习的数据集如何构成、有哪些格式、如何收集和处理数据集才能应用到大模型的训练和优化过程中。
1.数据集概述
机器学习中的数据集指的是用于训练机器学习或深度学习模型的数据集合,它是模型学习的基础,模型通过学习训练数据中的模式、特征和规律,来构建用于预测或分类的能力。数据集的质量和数量直接影响模型的性能和准确性。
以下是一个数据集格式的示例,它是标准的json格式,包含有多个字段:
{
"instruction": "示例问题或者指令。",
"input": "示例问题或指令的补充。",
"output": "对输入的回复。",
"task_type": {
"major": ["问答"],
"minor": ["百科问答"]
},
"domain": ["百科", "医疗"],
"answer_from": "human",
"human_verified": true,
"copyright": "作者及版权信息。",
}
数据字段:
-
`instruction`: 用于输入