灰色预测模型

 

特点:

利用少量、不完全的信息

预测的是指数型的数值

预测的是比较近的数据

灰色生成数列原理:

  1. 累加生成:

  1. 累减生成:通过累减生成还原成原始数列。

  1. 加权相邻生成:(会更接近每月中旬,更推荐用于缺失数据填补) 

加权邻值生成的作用

平滑数据:通过加权邻值生成,可以减少数据的波动,使数据序列更加平滑,从而更好地反映数据的内在规律。

增强规律性:加权邻值生成可以增强数据的规律性,使数据序列更符合灰色预测模型的假设,从而提高模型的预测精度。

构造模型步骤:

检查数列的级比:

要求:

不符合则要对该序列进行平移处理

定义灰导数:

d(k)=x(0)(k)=x(1)(k)-x(1)(k-1)

利用邻值生成序列

Z(1)(k)=αx(1)(k)+(1-α)x(1)(k-1)

于是定义GM(1,1)的微分方程模型为:

X(0)(k)+αz(1)(k)=b

用回归分析

求得该解α和b

求解微分方程并得到预测值

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值